Home
Class 12
MATHS
The determinant Delta=|{:(a^(2)+x^(2),ab...

The determinant `Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}|` is divisible by

A

x

B

`x^(2)`

C

`x^(3)`

D

`x^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant given by \[ \Delta = \begin{vmatrix} a^2 + x^2 & ab & ac \\ ab & b^2 + x^2 & bc \\ ac & bc & c^2 + x^2 \end{vmatrix} \] we will analyze the determinant and check its divisibility. ### Step 1: Rewrite the Determinant We can express the determinant in a more manageable form. Notice that the first row can be broken down into simpler components. We can factor out common terms from the rows or columns. ### Step 2: Factor Out Common Terms We will multiply the first column by \(a\), the second column by \(b\), and the third column by \(c\). This gives us: \[ \Delta = \begin{vmatrix} a(a^2 + x^2) & b(ab) & c(ac) \\ a(ab) & b(b^2 + x^2) & c(bc) \\ a(ac) & b(bc) & c(c^2 + x^2) \end{vmatrix} \] ### Step 3: Simplify the Determinant Now, we can simplify the determinant further by factoring out \(a\), \(b\), and \(c\) from the respective columns: \[ \Delta = abc \begin{vmatrix} a^2 + x^2 & ab & ac \\ ab & b^2 + x^2 & bc \\ ac & bc & c^2 + x^2 \end{vmatrix} \] ### Step 4: Calculate the Determinant Next, we can calculate the determinant using the properties of determinants. We can expand it using cofactor expansion or use row operations to simplify it. ### Step 5: Analyze the Result After calculating the determinant, we will analyze the resulting expression to see if it is divisible by \(x^2\). ### Step 6: Conclusion From the analysis, we can conclude that the determinant \(\Delta\) is divisible by \(x^2\). ### Final Answer Thus, the determinant \(\Delta\) is divisible by \(x^2\). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|21 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

The determinant Delta =|(a^2(1+x),ab,ac),(ab,b^2(1+x),bc), (ac,bc,c^2(1+x))| is divisible by 1)1+x 2)(1+x)^2 3)x^2 4) x^2+1

Without expanding the determinant, show that the determinant |{:(a^(2)+10,ab,ac),(ab,b^(2)+10,bc),(ac,bc,c^(2)+10):}| is divisible by 100

Knowledge Check

  • The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

    A
    `x+3`
    B
    `(1+x)^(2)`
    C
    `x^(2)`
    D
    `x^(2)+1`
  • What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

    A
    4 abc
    B
    `4a^(2)bc`
    C
    `4a^(2)b^(2)c^(2)`
    D
    `-4a^(2)b^(2)c^(2)`
  • What is the value of |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| ?

    A
    4abc
    B
    `4a^(2)bc`
    C
    `4a^(2)b^(2)c^(2)`
    D
    `-4a^(2)b^(2)c^(2)`
  • Similar Questions

    Explore conceptually related problems

    The determinant Delta=|(a^2+x,ab,ac),(ab,b^2+x,bc),(ac,bc,c^2+x)| is divisible by

    the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

    Prove that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2) .

    The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2)| equals

    If Delta^2=|(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ac,bc,a^2+b^2)| , then Delta is equal to