Home
Class 12
MATHS
The value of int(-pi//2)^(pi//2) (x^(2)c...

The value of `int_(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx` is equal to

A

`(pi^(2))/(4)-2`

B

`(pi^(2))/(4)+2`

C

`pi^(2)- e^(-pi//2)`

D

`pi^(2) +e^(pi//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1 + e^x} \, dx, \] we can use the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = \int_{-a}^{a} f(-x) \, dx. \] ### Step 1: Substitute \( x \) with \( -x \) We will evaluate \( I \) by substituting \( x \) with \( -x \): \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(-x)^2 \cos(-x)}{1 + e^{-x}} \, dx. \] Since \( (-x)^2 = x^2 \) and \( \cos(-x) = \cos x \), we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1 + e^{-x}} \, dx. \] ### Step 2: Simplify the denominator Now, we simplify the denominator \( 1 + e^{-x} \): \[ 1 + e^{-x} = \frac{e^x + 1}{e^x}. \] Thus, we can rewrite the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x \cdot e^x}{e^x + 1} \, dx. \] ### Step 3: Combine the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1 + e^x} \, dx \) 2. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x \cdot e^x}{e^x + 1} \, dx \) Adding these two equations gives: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{x^2 \cos x}{1 + e^x} + \frac{x^2 \cos x \cdot e^x}{e^x + 1} \right) \, dx. \] ### Step 4: Factor out the common term Factoring out \( x^2 \cos x \): \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \cos x \left( \frac{1 + e^x}{1 + e^x} \right) \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \cos x \, dx. \] ### Step 5: Evaluate the integral Since \( x^2 \cos x \) is an even function, we can simplify the integral: \[ 2I = 2 \int_{0}^{\frac{\pi}{2}} x^2 \cos x \, dx. \] Thus, \[ I = \int_{0}^{\frac{\pi}{2}} x^2 \cos x \, dx. \] ### Step 6: Integration by parts Using integration by parts, let: - \( u = x^2 \) → \( du = 2x \, dx \) - \( dv = \cos x \, dx \) → \( v = \sin x \) Applying integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we have: \[ \int x^2 \cos x \, dx = x^2 \sin x - \int 2x \sin x \, dx. \] ### Step 7: Apply integration by parts again Now we need to integrate \( \int 2x \sin x \, dx \) again by parts: Let: - \( u = 2x \) → \( du = 2 \, dx \) - \( dv = \sin x \, dx \) → \( v = -\cos x \) Thus, \[ \int 2x \sin x \, dx = -2x \cos x + 2 \int \cos x \, dx = -2x \cos x + 2 \sin x. \] ### Step 8: Combine results Putting it all together: \[ \int x^2 \cos x \, dx = x^2 \sin x + 2x \cos x - 2 \sin x. \] Evaluating from \( 0 \) to \( \frac{\pi}{2} \): At \( x = \frac{\pi}{2} \): \[ \left( \frac{\pi^2}{4} \cdot 1 + 2 \cdot \frac{\pi}{2} \cdot 0 - 2 \cdot 1 \right) = \frac{\pi^2}{4} - 2. \] At \( x = 0 \): \[ 0. \] Thus, \[ I = \left( \frac{\pi^2}{4} - 2 \right) - 0 = \frac{\pi^2}{4} - 2. \] ### Final Answer Therefore, the value of the integral is: \[ \boxed{\frac{\pi^2}{4} - 2}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|5 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi/2)^( pi/2)(x^(3)+x cos x+tan^(5)x+1)dx is equal to (A)0(B)2C)pi(D) none of these

int_((-pi)/(2))^((pi)/(2))((cos x)/(1-e^(x)))dx=

Knowledge Check

  • The value of int_(-pi//2)^(pi//2)(x^(2)cosx)/(1+e^(x)) d x is equal to

    A
    `(pi^(2))/(4)-2`
    B
    `(pi^(2))/(4)+2`
    C
    `pi^(2)-e^(-pi//2)`
    D
    `pi^(2)-e+^(pi//2)`
  • The value of int_(-(pi)/(2))^(pi/2)(x^(2)cosx)/(1+e^(x))dx is equal to

    A
    `(pi^(2))/(4) - 2`
    B
    `(pi^(2))/(4) +2`
    C
    `pi^(2) - e^(pi//2)`
    D
    `pi^(2)+e^(pi//2)`
  • int_(-pi//2)^(pi//2) (cos x dx)/(1+ e^(x))=

    A
    1
    B
    2
    C
    log 2
    D
    none
  • Similar Questions

    Explore conceptually related problems

    The value of int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal to

    The value of int_(- pi//2) ^(pi//2) ( cos^2 x)/( 1+3^x ) dx is

    int_(-pi//2)^(pi//2) (cos x)/(1+e^(x))dx=

    The value of int_(pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

    The value of int_(-pi//2)^(pi//2)(x^(3) + x cos x + tan^(5)x + 1)dx is