Home
Class 12
MATHS
If alpha,beta!=0 , and f(n)""=alpha^n+be...

If `alpha,beta!=0` , and `f(n)""=alpha^n+beta^n` and `|3 1+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)|=K(1-alpha)^2(1-beta)^2(alpha-beta)^2` , then K is equal to (1) `alphabeta` (2) `1/(alphabeta)` (3) 1 (4) `-1`

A

1

B

-1

C

`alphabeta`

D

`alphabetagamma`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|21 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If alpha,betane0 and f(n)=alpha^(n)+beta^(n) and |(3,1+f(1),1+f(2)),(1+f(1),1+f(2),1+f(3)),(1+f(2),1+f(3),1+f(4))|=k(1-alpha)^(2)(1-beta)^(2)(alpha-beta)^(2) , then k is equal to

If alpha,betane0andf(n)=alpha^(n)+beta^(n) and {:|(3,1+f(1),1+f(2)),(1+f(1),1+f(2),1+f(3)),(1+f(2),1+f(3),1+f(4))|=k(1-alpha)^(2)(1-beta)^(2)(alpha-beta)^(2) then k =

Knowledge Check

  • If alpha, beta ne 0, f(n) = alpha^n+ beta^n and abs([3,1+f(1) ,1+f(2)],[1+f(1),1+f(2),1+f(3)],[1+f(2),1+f(3),1+f(4)]) =k(1-alpha)^2(1-beta)^2(alpha-beta)^2 then k is equal to

    A
    `alpha beta`
    B
    `1/alpha beta`
    C
    1
    D
    -1
  • Similar Questions

    Explore conceptually related problems

    Let f(n)=a^n+b^n and |(3, 1+f(1), 1f(2)),(1+f(1), 1+f(2), 1+f(3)),(1+f(2), 1+f(3), 1+f(4))|=k(1-a)^2(1-b)^2(a-b)^2 , then k= (A) 0 (B) 1 (C) -1 (D) 4

    If f(x)=alpha x+beta and f(0)=f^(1)(0)=1 then f(2) =

    If f(x)= alpha x+beta and f(0)=f^(')(0)=1 then f(2) =

    If a+alpha=1,b+beta=2 and af(n)+alphaf(1/n)=bn+beta/n , then find the value of (f(n)+f(1/n))/(n+1/n)

    | alpha alpha1 beta F|=(alpha-P)(beta-alpha)

    If alpha+beta=1 , and alpha.beta=-(3)/(2) , then find alpha^(2)+beta^(2)=

    If f(alpha, beta) = cos^(4)alpha/cos^(2)beta + sin^(4)alpha/sin^(2)beta then prove that f(alpha, beta) =1 ⇔ f(beta, alpha) =1 .