Home
Class 12
MATHS
If y=(secx-tanx)/(secx+tanx), then (dy)/...

If `y=(secx-tanx)/(secx+tanx),` then `(dy)/(dx)` equals.

A

`2secx(secx-tanx)`

B

`-2secx(secx-tanx)^(2)`

C

`2secx(secx-tanx)^(2)`

D

`-2secx(secx+tanx)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \frac{\sec x - \tan x}{\sec x + \tan x} \), we will follow these steps: ### Step 1: Rationalize the expression We can rationalize the expression by multiplying the numerator and denominator by the conjugate of the denominator: \[ y = \frac{(\sec x - \tan x)(\sec x - \tan x)}{(\sec x + \tan x)(\sec x - \tan x)} \] ### Step 2: Simplify the numerator and denominator Using the identity \( a^2 - b^2 = (a + b)(a - b) \): - The numerator becomes: \[ (\sec x - \tan x)^2 = \sec^2 x - 2\sec x \tan x + \tan^2 x \] - The denominator simplifies using the identity \( \sec^2 x - \tan^2 x = 1 \): \[ (\sec x + \tan x)(\sec x - \tan x) = \sec^2 x - \tan^2 x = 1 \] Thus, we have: \[ y = \sec^2 x - 2\sec x \tan x \] ### Step 3: Differentiate \( y \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(\sec^2 x - 2\sec x \tan x) \] Using the product rule and chain rule, we differentiate each term: 1. The derivative of \( \sec^2 x \) is \( 2\sec^2 x \tan x \). 2. The derivative of \( -2\sec x \tan x \) using the product rule: \[ -2(\sec x \cdot \frac{d}{dx}(\tan x) + \tan x \cdot \frac{d}{dx}(\sec x)) = -2(\sec x \sec^2 x + \tan x \sec x \tan x) \] Combining these results, we have: \[ \frac{dy}{dx} = 2\sec^2 x \tan x - 2(\sec^3 x + \sec x \tan^2 x) \] ### Step 4: Factor out common terms Factoring out \( 2\sec x \): \[ \frac{dy}{dx} = 2\sec x (\sec x \tan x - \sec^2 x - \tan^2 x) \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -2\sec x (\sec x - \tan x)^2 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|16 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 10|4 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(secx+tanx)

If y=(tanx)^(cotx) , then (dy)/(dx) is equal to......

Knowledge Check

  • If y=(tanx+cotx)/(tanx-cotx)," then: "(dy)/(dx)=

    A
    `2sec2x*tan2x`
    B
    `sec2x*tan2x`
    C
    `-sec2x*tan2x`
    D
    `-2sec2x*tan2x`
  • If y=(sinx)^(tanx),then(dy)/(dx) is equal to

    A
    `(sinx)^(tanx).[1+sec^2x.log(sinx)]`
    B
    `tanx.(sinx)^(tanx-1).cosx`
    C
    `(sinx)^(tanx).sec^2.x.log(sinx)`
    D
    `tanx.(sinx)^(tanx-1)`
  • If y= log (secx+tan x ) ,then (dy)/(dx)

    A
    ` secx `
    B
    `secx tan x `
    C
    ` tanx`
    D
    ` cos x `
  • Similar Questions

    Explore conceptually related problems

    If y=secx*tanx then dy/dx=

    int(tanx)/(secx+tanx)dx=

    If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).

    int_0^pi (xtanx)/(secx+tanx)dx

    (d)/(dx)((secx+tanx)/(secx-tanx))=