Home
Class 12
MATHS
The value of int(0)^(pi//4) log (1+ tan ...

The value of `int_(0)^(pi//4) log (1+ tan theta ) d theta` is equal to

A

`(pi)/(2)log2`

B

`-(pi)/(4)log 2`

C

`(pi)/(8) log2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan \theta) \, d\theta \), we can use a symmetry property of definite integrals. Here’s a step-by-step solution: ### Step 1: Use the property of definite integrals We can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = \frac{\pi}{4} \). Therefore, we can write: \[ I = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan(\frac{\pi}{4} - \theta)) \, d\theta \] ### Step 2: Simplify \( \tan(\frac{\pi}{4} - \theta) \) Using the tangent subtraction formula: \[ \tan\left(\frac{\pi}{4} - \theta\right) = \frac{\tan\frac{\pi}{4} - \tan\theta}{1 + \tan\frac{\pi}{4} \tan\theta} = \frac{1 - \tan\theta}{1 + \tan\theta} \] Thus, we have: \[ I = \int_{0}^{\frac{\pi}{4}} \log\left(1 + \frac{1 - \tan\theta}{1 + \tan\theta}\right) \, d\theta \] ### Step 3: Simplify the logarithmic expression Now we simplify the logarithmic expression: \[ 1 + \frac{1 - \tan\theta}{1 + \tan\theta} = \frac{(1 + \tan\theta) + (1 - \tan\theta)}{1 + \tan\theta} = \frac{2}{1 + \tan\theta} \] So, we can rewrite \( I \) as: \[ I = \int_{0}^{\frac{\pi}{4}} \log\left(\frac{2}{1 + \tan\theta}\right) \, d\theta \] ### Step 4: Split the logarithm Using the property of logarithms, we can split the integral: \[ I = \int_{0}^{\frac{\pi}{4}} \log(2) \, d\theta - \int_{0}^{\frac{\pi}{4}} \log(1 + \tan\theta) \, d\theta \] This simplifies to: \[ I = \log(2) \cdot \int_{0}^{\frac{\pi}{4}} d\theta - I \] ### Step 5: Evaluate the integral The integral \( \int_{0}^{\frac{\pi}{4}} d\theta \) evaluates to \( \frac{\pi}{4} \): \[ I = \log(2) \cdot \frac{\pi}{4} - I \] ### Step 6: Solve for \( I \) Now, we can solve for \( I \): \[ 2I = \log(2) \cdot \frac{\pi}{4} \] \[ I = \frac{\log(2) \cdot \frac{\pi}{4}}{2} = \frac{\log(2) \cdot \pi}{8} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{\log(2) \cdot \pi}{8} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_ (0) ^ ((pi) / (4)) ln (1 + tan theta) d theta

int_ (0) ^ ((pi) / (4)) log (1 + tan theta) dth eta

Knowledge Check

  • The value of int_(0)^(pi//4) log (1+ tan x) dx is

    A
    `(1)/(2) pi log 8`
    B
    `(1)/(8) pi log 2`
    C
    `(1)/(4) pi log 2`
    D
    None of these
  • The value of int_(-pi/4)^(pi//4) log (sec theta-tan theta) d theta is

    A
    0
    B
    `pi/4`
    C
    `pi`
    D
    `pi/2`
  • int _(0)^(pi//4) sec^(7) theta sin^(3) theta d theta is equal to

    A
    `(1)/(12)`
    B
    `(3)/(12)`
    C
    `(5)/(12)`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    int_(0)^((pi)/(2))(sec theta-tan theta)d theta

    The value of int_(0)^(pi//2) sqrt( sin 2 theta) sin theta d theta is

    The value of int_(0)^(pi) | sin^(3) theta | d theta is

    int_0^(pi//2) (cos theta)/(sqrt(4-sin^2 theta) d theta is equal to

    int_(0)^(pi//2) (cos theta)/(sqrt(4-sin^(2)theta))d theta is equal to