Home
Class 12
MATHS
If a^(2)+b^(2)+c^(2)=-2 and f(x)= |{:(...

If `a^(2)+b^(2)+c^(2)`=-2 and f(x)= `|{:(1+a^(2)x,(1+b^(2))x,(1+c^(2))x),((1+a^(2))x,1+b^(2)x,(1+c^(2))x),((1+a^(2))x,(1+b^(2))x,1+c^(2)x):}|` then f(x) is a polynomial of degree

A

3

B

2

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the degree of the polynomial \( f(x) \) defined by the determinant: \[ f(x) = \left| \begin{array}{ccc} 1 + a^2 x & 1 + b^2 x & 1 + c^2 x \\ 1 + a^2 x & 1 + b^2 x & 1 + c^2 x \\ 1 + a^2 x & 1 + b^2 x & 1 + c^2 x \end{array} \right| \] Given that \( a^2 + b^2 + c^2 = -2 \), we will simplify the determinant step by step. ### Step 1: Write the Determinant We start by writing the determinant explicitly: \[ f(x) = \left| \begin{array}{ccc} 1 + a^2 x & 1 + b^2 x & 1 + c^2 x \\ 1 + a^2 x & 1 + b^2 x & 1 + c^2 x \\ 1 + a^2 x & 1 + b^2 x & 1 + c^2 x \end{array} \right| \] ### Step 2: Simplify the Determinant Notice that all rows of the determinant are identical. Therefore, the determinant of a matrix with identical rows is zero: \[ f(x) = 0 \] ### Step 3: Analyze the Result Since \( f(x) = 0 \), it implies that \( f(x) \) is a constant function (specifically, the constant zero). The degree of a constant function is defined as 0. ### Conclusion Thus, the degree of the polynomial \( f(x) \) is: \[ \text{Degree of } f(x) = 0 \] ### Final Answer The degree of \( f(x) \) is **0**. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|17 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If a^(2)+b^(2)+c^(2) =-2 and f(x)= |{:(1+a^(2)x,(1+b^(2))x,(1+c^(2))x),((1+a^(2))x,1+b^(2)x,(1+c^(2))x),((1+a^(2))x,(1+b^(2))x,1+c^(2)x):}| the f(x) is a polynomial of degree

If a^2+b^2+c^2=-2a n df(x)= |a+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c^2)x(1+a^2)x(1+b^2)x1+c^2x| , then f(x) is a polynomial of degree 0 b. 1 c. 2 d. 3

Knowledge Check

  • If sum a^2=-2 and f(x)=|(1+a^2x,(1+b^2)x,(1+c^2)x),((1+a^2)x,1+b^2x,(1+c^2)x),((1+a^2)x,(1+b^2)x,1+c^2x)| then f (x) is polynomial of degree

    A
    3
    B
    2
    C
    1
    D
    0
  • If a^2+b^2+c^2=2 and f(x)bar([1+a^2x , (1+b^2)x , (1+c^2)x],[(1+a^2)x,(1+b^2)x,(1+c^2)x],[(1+a^2)x,(1+b^2)x,(1+c^2x)]) then f(x) is a polynomial of degree

    A
    3
    B
    2
    C
    1
    D
    0
  • If a^2+b^2+c^2=2 and f(x)bar([1+a^2x , (1+b^2)x , (1+c^2)x],[(1+a^2)x,(1+b^2)x,(1+c^2)x],[(1+a^2)x,(1+b^2)x,(1+c^2x)]) then f(x) is a polynomial of degree

    A
    3
    B
    2
    C
    1
    D
    0
  • Similar Questions

    Explore conceptually related problems

    If a^2+b^2+c^2=-2\ a b n df(x)=|1+a^xx(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c^2)x(1+a^2)x(1+b^2)x1+c^2x| , then f(x) is a polynomial of degree- a. 2 b. \ 3 c. \ 0 d. 1

    prove that |{:((a-x)^(2),,(a-y)^(2),,(a-z)^(2)),((b-x)^(2),,(b-y)^(2),,(b-z)^(2)),((c-x)^(2),,(c-y)^(2),,(c-z)^(2)):}| |{:((1+ax)^(2),,(1+bx)^(2),,(1+cx)^(2)),((1+ay)^(2),,(1+by)^(2),,(1+cy)^(2)),((1+az)^(2),,(1+bx)^(2),,(1+cz)^(2)):}| =2 (b-c)(c-a)(a-b)xx (y-z) (z-x)(x-y)

    if (x^(2)+x+1)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) then A-B=

    Suppose a_(1)+a_(2)+a_(3)+1.3,b_(1)+b_(2)+b_(3)=2.1,c_(1)+c_(2)+c_(3)=1.6 and Delta(x)=|(1+a_(1)x,1+b_(1)x,1+c_(1)x),(1+a_(2)x,1+b_(2)x,1+c_(3)x),(1+a_(3)x,1+b_(3)x,1+c4x)| =A_(0)+A_(1)x+A_(2)x^(2)+A_(2)x^(3) , then A_(1)= _________

    If the polynomial f(x) = |{:((1+x)^(a), (2+x)^(b),1),(1, (1 + x)^(a), (2 + x)^(b)),((2+x)^(b) , 1, (1+x)^(a)) :}| then the constant term of f(x) is