Home
Class 12
MATHS
int(0)^(pi//4) cos^(2) x dx...

`int_(0)^(pi//4) cos^(2) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{4}} \cos^2 x \, dx \), we can use the trigonometric identity for \( \cos^2 x \): \[ \cos^2 x = \frac{1 + \cos(2x)}{2} \] Now, we can rewrite the integral using this identity: \[ I = \int_{0}^{\frac{\pi}{4}} \cos^2 x \, dx = \int_{0}^{\frac{\pi}{4}} \frac{1 + \cos(2x)}{2} \, dx \] Next, we can separate the integral: \[ I = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} 1 \, dx + \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \cos(2x) \, dx \] Now, we can evaluate each integral separately. 1. The first integral is straightforward: \[ \int_{0}^{\frac{\pi}{4}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{4}} = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] 2. The second integral requires a simple substitution. The integral of \( \cos(2x) \) is: \[ \int \cos(2x) \, dx = \frac{1}{2} \sin(2x) + C \] Thus, we evaluate: \[ \int_{0}^{\frac{\pi}{4}} \cos(2x) \, dx = \left[ \frac{1}{2} \sin(2x) \right]_{0}^{\frac{\pi}{4}} = \frac{1}{2} \sin\left(2 \cdot \frac{\pi}{4}\right) - \frac{1}{2} \sin(0) = \frac{1}{2} \sin\left(\frac{\pi}{2}\right) - 0 = \frac{1}{2} \cdot 1 = \frac{1}{2} \] Now we can substitute back into our expression for \( I \): \[ I = \frac{1}{2} \left( \frac{\pi}{4} \right) + \frac{1}{2} \left( \frac{1}{2} \right) = \frac{\pi}{8} + \frac{1}{4} \] To combine these fractions, we need a common denominator: \[ \frac{1}{4} = \frac{2}{8} \] So, \[ I = \frac{\pi}{8} + \frac{2}{8} = \frac{\pi + 2}{8} \] Thus, the final answer is: \[ \int_{0}^{\frac{\pi}{4}} \cos^2 x \, dx = \frac{\pi + 2}{8} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|14 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Prove that the equality int_(0)^(pi//2) sin ^(m) x dx = int_(0)^(pi//2) cos ^(m) x dx and apply the obtained result in computing the following integrals : int_(0)^(pi//2) cos^(2) "x dx and " int_(0)^(pi//2) sin ^(2) x dx

int_(0)^(pi/2) (cos^(2)x dx)/(cos^(2)x+4 sin^(2)x)

Knowledge Check

  • If int_(0)^(pi) x f (cos^(2) x + tan ^(4) x ) dx = k int_(0)^(pi//2) f(cos^(2) x + tan ^(4) x ) dx then k =

    A
    `pi/2`
    B
    `pi/4`
    C
    `pi`
    D
    1
  • If I_(1)=int_(0)^(pi//2)f(sin2x)sin x dx and I_(2)=int_(0)^(pi//4)f(cos2x)cosx dx , then I_(1)//I_(2) is equal to

    A
    1
    B
    2
    C
    `1//sqrt(2)`
    D
    `sqrt(2)`
  • int_(0)^(pi//4)(cos^(2)x-cos^(4)x)dx

    A
    `(pi)/(8)`
    B
    `(pi)/(16)`
    C
    `(pi)/(32)`
    D
    `(pi)/(4)`
  • Similar Questions

    Explore conceptually related problems

    Prove that : int_(0)^(pi) x cos^(2) x dx =(pi^(2))/(4)

    int_(0)^(pi//2) x^(2) cos x dx

    int _(0) ^(pi) (cos ^(2) x ) dx,

    int_(0)^( pi/4)(1)/(cos^(2)x)dx

    int_(0)^(pi//2) f(sin 2x) sin x dx= int_(0)^(pi//2) f(sin 2x) cos x dx= sqrt""2 int_(0)^(pi//4) f(cos 2x) cos x dx