Home
Class 12
MATHS
If f(x)= sum(n=1)(sin nx)/(4^(n)) and in...

If `f(x)= sum_(n=1)(sin nx)/(4^(n)) and int_(0)^(pi)f(x) dx="log" ((m)/(n))`, then the value of `(m+n)` is ….

Text Solution

Verified by Experts

The correct Answer is:
8
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|4 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

If f(x)=sum_(n=0)^(oo)(x^(n))/(n!)(log a)^(n), then at x=0,f(x)

Knowledge Check

  • If M=int_(0)^((pi)/2)(cosx)/(x+2)dx and N=int_(0)^((pi)/4)(sinxcosx)/((x+1)^(2))dx , then the value of M-N is

    A
    `pi`
    B
    `(pi)/4`
    C
    `2/(pi-4)`
    D
    `2/(pi+4)`
  • Let f(x) = int_(0)^(pi)(sinx)^(n) dx, n in N then

    A
    `I_(n)` is rational if n is odd
    B
    `I_(n)` is irrational if n is even
    C
    `I_(n)` is an increasing sequence
    D
    `I_(n)` is a decreasing sequence
  • For every integer n, int_(n)^(n+1)f(x)dx=n^(2) , then the value of int_(0)^(5)f(x)dx=

    A
    20
    B
    25
    C
    30
    D
    35
  • Similar Questions

    Explore conceptually related problems

    If for every integer n, int_(n)^(n+1) f(x) dx= n^(2) , then the value of int_(-2)^(-4) f(x) dx is

    If I_(n)=int(sin nx)/(sin x)dx, for n>1, then the value of I_(n)-I_(n-2) is

    If f(n)=int_(0)^(2015)(e^(x))/(1+x^(n))dx , then find the value of lim_(nto oo)f(n)

    If a=(e^(2 pi i))/(7) and f(x)=A_(0)+sum_(k=1)^(20)A_(k)x^(k) then the value of sum_(r=0)^(6)f(a^(r)x)=n(A_(0)+A_(n)x^(n)+A_(2n)x^(2n)), then the value of n is

    If I_(n)=int_(0)^((pi)/(2))(sin^(2)nx)/(sin^(2)x)dx, then