Home
Class 10
MATHS
In DeltaABC and DeltaPQR, in a one to on...

In `DeltaABC and DeltaPQR`, in a one to one correspondence.
`(AB)/(QR) = (BC)/(PR) = (CA)/(PQ)`, then

A

`DeltaPQR ~ DeltaABC`

B

`DeltaPQR ~ DeltaCAB`

C

`DeltaCBA ~ DeltaPQR`

D

`DeltaBCA ~ DeltaPQR`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SIMILARITY

    TARGET PUBLICATION|Exercise Activites for Practice|4 Videos
  • SIMILARITY

    TARGET PUBLICATION|Exercise Multiple Choice Questions|28 Videos
  • SIMILARITY

    TARGET PUBLICATION|Exercise Practice Set 1.4|7 Videos
  • QUESTION FROM STD. IX

    TARGET PUBLICATION|Exercise Statistics|14 Videos
  • STATISTICS

    TARGET PUBLICATION|Exercise Problem Set-6|21 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC and DeltaPQR , in a one-to-one correspondance (AB)/(QR)=(BC)/(PR)=(CA)/(PQ) then……

In DeltaABC and DeltaPQR in a one-to-one correspndence (AB)/(QR)=(BC)/(PR)=(CA)/(PQ) then

Knowledge Check

  • If in two DeltaABC and DeltaPQR , (AB)/(QR)=(BC)/(PR)=(CA)/(PQ) , then

    A
    `DeltaPQR~DeltaCAB`
    B
    `DeltaPQR~DeltaABC`
    C
    `DeltaCBA~DeltaPQR`
    D
    `DeltaBCA~DeltaPQR`
  • The perimeters of two similar triangles DeltaABC and DeltaPQR are 36 cm and 24 cm respectively. If PQ = 10 cm , then AB is

    A
    15 cm
    B
    12 cm
    C
    14 cm
    D
    26 cm
  • Choose the correct alternative. DeltaABC and DeltaPQR are equilateral triangles. If A(DeltaABC) : A(DeltaPQR) = 1 : 16, and AB = 2 cm, then what is the length of PR?

    A
    4 cm
    B
    2 cm
    C
    6 cm
    D
    8cm
  • Similar Questions

    Explore conceptually related problems

    If AB=QR,BC=PR and CA=PQ then

    Perimeter of two similar triangles DeltaABC and DeltaPQR are 36 cm and 24 cm respectively and if PQ = 10. Find AB.

    Which of the following pairs of triangles are congruent ? Also state the condition of congruency in each case : (iv) In DeltaABC and DeltaDEF, AB=EF, BC=DF and angleB=angleF (v) In DeltaABC and DeltaPQR, AB=QR, AC=PR and angleB=angleR (vi) In DeltaABC and DeltaPQR, angleA=angleP, AC=PR and AB=PQ (vi) In DeltaABC and DeltaPQR, AB=QR, angle A=angle Q and AC=QP .

    DeltaABC~DeltaPQR . If AB : PQ=4: 5 , find A(DeltaABC) : A(DeltaPQR) .

    Assertion : In DeltaABC and DeltaPQR, AB=PQ AC=PR and angle BAC= angle QPR :. DeltaABC ~=DeltaPQR Reason : Both the triangles are congruent by SSS congruence.