Home
Class 12
MATHS
int x log x, dx...

`int x log x, dx`

A

`(1)/(4)(2x^(2)logx-1)+c`

B

`(x^(2))/(4)(2logx+1)+c`

C

`(x^(2))/(2)(2logx-1)+c`

D

`(x^(2))/(4)(2logx-1)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \log x \, dx \), we will use the method of integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \log x \) (which we will differentiate) - \( dv = x \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{x} \, dx \] - Integrate \( dv \): \[ v = \int x \, dx = \frac{x^2}{2} \] ### Step 3: Apply the Integration by Parts Formula Now, we can apply the integration by parts formula: \[ \int x \log x \, dx = uv - \int v \, du \] Substituting the values of \( u \), \( v \), \( du \): \[ \int x \log x \, dx = \log x \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx \] ### Step 4: Simplify the Integral The integral simplifies as follows: \[ \int x \log x \, dx = \frac{x^2 \log x}{2} - \int \frac{x^2}{2x} \, dx \] This simplifies to: \[ \int x \log x \, dx = \frac{x^2 \log x}{2} - \int \frac{x}{2} \, dx \] ### Step 5: Solve the Remaining Integral Now we need to solve \( \int \frac{x}{2} \, dx \): \[ \int \frac{x}{2} \, dx = \frac{1}{2} \cdot \frac{x^2}{2} = \frac{x^2}{4} \] ### Step 6: Combine the Results Putting it all together, we have: \[ \int x \log x \, dx = \frac{x^2 \log x}{2} - \frac{x^2}{4} + C \] ### Final Answer Thus, the final result is: \[ \int x \log x \, dx = \frac{x^2 \log x}{2} - \frac{x^2}{4} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int x^3 log x dx

Evaluate : int x log 2x dx

(i) int x^2 log x dx (ii) int (x^2+1) log x dx

Evaluate : int x^n log x dx.

Evaluate the following (i) int x log (1+x) dx (ii) int x log^2x dx

int x log x^(2)dx

1) int x log x^(2)dx

Evaluate: int x log(1+x)dx

" 'f g) "int x log(1+x)dx

(i) int (log x)/x dx (ii) int (log x)^2/x dx