Home
Class 12
MATHS
Consider (1 + x + x^(2))^(n) = sum(r=0)...

Consider `(1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r)` , where ` a_(0), a_(1), a_(2),…, a_(2n)` are
real number and n is positive integer.
The value of ` sum_(r=0)^(n-1) a_(r)` is

A

`(-3^(n) - a_(n))/(2)`

B

`(3^(n) -a_(n))/(2)`

C

`(a_(n) - 3^(n))/(2)`

D

`(3^(n) + a_(n))/(2)`

Text Solution

Verified by Experts

The correct Answer is:
b

We have , ` (1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(r)` ….(i)
On replacing x by `(1)/(x)` , we get
` (1 + (1)/(x) + (1)/(x^(2)))^(n) = sum_(r=0)^(2n) a_(r) ((1)/(x))^(r)`
` rArr (1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(2n-r)` ...(iii)
From Eqs . (i) and (ii) , we get
` sum_(r=0)^(2n) a_(r) x^(r) = sum_(r=0)^(2n) a_(r) x^(2n-r) `
Equating the coefficient of ` x^(2n - r)` on both sides , we get
` a_(2n-r) = a_(r)`
` 0 le r le 2n ` ...(iii)`
On putting r = 0,1,2,3,...,n-1, n, we get
` a_(2n) = a_(0)`
` a_(2n-1) = a_(1)`
` a_(2n-2) = a_(2)`
`( a_(2n-3) = a_(3) ,)`
`(a_(n+1) = a_(n-1) , a_(n) = a_(n))`
Then , ` a_(0) + a_(1) + a_(2) + ...+ a_(n-1)`
` = a_(n+1) + a_(n+2) + ...+ a_(2n)` ....(iv)
and on putting x = 1 in Eq . (i) , we get
` sum_(r=0) ^(2n) a_(r) = 3^(n)`
` rArr (a_(0) + a_(1) + a_(2) + ...+ a_(n-1) + a_(n) + (a_(n+1) + a_(n+1) + a_(n+2) + ...+ a_(2n)) = 3^(n)`
From Eq . (iv) , we get
` 2(a_(0) + a_(1) + a_(2) + ...+ a_(n-1)) = 3^(n) - a_(n) `
or ` sum_(r=0) ^(n-1) a_(r) = ((3^(n) - a_(n))/(2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|9 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

If (1+x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then prove that a_(r)=a_(2n-r)

If (1+x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then a_(1)-2a_(2)+3a_(3)-...-2na_(2n)=

Knowledge Check

  • Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is even, the value of sum_(r=0)^(n//2-1) a_(2r) is

    A
    `(3^(n) - 1 + a_(n))/(2)`
    B
    `(3^(n) -1 - a_(n))/(4)`
    C
    `(3^(n) + 1 + a_(n))/(2)`
    D
    `(3^(n) + 1 - 2a_(n))/(4)`
  • Consider (1+x+x^(2)) ^(n) = sum _(r=0)^(2n) a_(r) x^(r) , "where " a_(0),a_(1), a_(2),…a_(2n) are real numbers and n is a positive integer. The value of a_(2) is

    A
    `""^(4n+1)C_(2)`
    B
    `""^(3n+1)C_(2)`
    C
    `""^(2n+1)C_(2)`
    D
    `""^(n+1)C_(2)`
  • Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is odd , the value of sum_(r-1)^(2) a_(2r -1) is

    A
    `(3^(n) - 1 + 2a_(n))/(2)`
    B
    `(3^(n) - 1 + 2a_(n))/(4)`
    C
    `(3^(n) + 1 + 2n_(n))/(2)`
    D
    `(3^(n) + 1 - 2a_(n))/(4)`
  • Similar Questions

    Explore conceptually related problems

    If n in N and if (1+4x+4x^(2))^(n)=sum_(r=0)^(2a)a_(r)x^(r) where a_(0),a_(1),a_(2),......,a_(2n) are real numbers. The value of 2sum_(r=0)^(n)a_(2r), is

    (1+x-2x^(2))^(6)=sum_(r=0)^(12)a_(r)x^(r) then a_(2)+a_(4)+....+a_(12)=

    If f(x)=sum_(k=0)^(n)a_(k)|x-1|^(k), where a_(i)in R, then

    If (1+x-2x^(2))^(6)=sum_(r=0)^(12)a_(r).x^(r) then a_(1)+a_(3)+......a_(11)

    If (1+2x+x^(2))^(n)= sum_(r=0)^(2n) a_(r )x^(r ) , then a_(r )=