Home
Class 12
MATHS
int (dx)/((x+1)(x-2))=A log (x+1)+B log ...

`int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C`, where

A

`A+B=0`

B

`AB=0`

C

`A//B=-1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{dx}{(x+1)(x-2)}\) and express it in the form \(A \log(x+1) + B \log(x-2) + C\), we can use the method of partial fractions. Here’s the step-by-step solution: ### Step 1: Set up the partial fraction decomposition We start by expressing the integrand as a sum of partial fractions: \[ \frac{1}{(x+1)(x-2)} = \frac{A}{x+1} + \frac{B}{x-2} \] where \(A\) and \(B\) are constants to be determined. ### Step 2: Clear the denominator Multiply both sides by \((x+1)(x-2)\) to eliminate the denominator: \[ 1 = A(x-2) + B(x+1) \] ### Step 3: Expand the right-hand side Expanding the right-hand side gives: \[ 1 = Ax - 2A + Bx + B \] Combining like terms, we have: \[ 1 = (A + B)x + (-2A + B) \] ### Step 4: Set up equations for coefficients For the equation to hold for all \(x\), the coefficients of \(x\) and the constant terms must be equal. This gives us the system of equations: 1. \(A + B = 0\) (coefficient of \(x\)) 2. \(-2A + B = 1\) (constant term) ### Step 5: Solve the system of equations From the first equation, we can express \(B\) in terms of \(A\): \[ B = -A \] Substituting this into the second equation: \[ -2A - A = 1 \implies -3A = 1 \implies A = -\frac{1}{3} \] Now substituting \(A\) back to find \(B\): \[ B = -(-\frac{1}{3}) = \frac{1}{3} \] ### Step 6: Write the integral using the partial fractions Now we can rewrite the integral: \[ \int \frac{dx}{(x+1)(x-2)} = \int \left(-\frac{1}{3(x+1)} + \frac{1}{3(x-2)}\right) dx \] ### Step 7: Integrate each term Integrating each term separately: \[ = -\frac{1}{3} \int \frac{dx}{x+1} + \frac{1}{3} \int \frac{dx}{x-2} \] \[ = -\frac{1}{3} \log|x+1| + \frac{1}{3} \log|x-2| + C \] ### Step 8: Combine the logarithms Combining the logarithms gives: \[ = \frac{1}{3} \left(\log|x-2| - \log|x+1|\right) + C = \frac{1}{3} \log\left|\frac{x-2}{x+1}\right| + C \] ### Conclusion Thus, we have: \[ \int \frac{dx}{(x+1)(x-2)} = -\frac{1}{3} \log(x+1) + \frac{1}{3} \log(x-2) + C \] ### Final Result Identifying \(A = -\frac{1}{3}\) and \(B = \frac{1}{3}\), we can conclude: \[ A + B = 0 \quad \text{and} \quad \frac{A}{B} = -1 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|11 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If int ((x -1) dx )/( (x +1) (x -2))= A log |x +1| +B log |x-2| then A + B =1

int(x-1)/((x-3)(x-2))dx=A ln(x-3)+B ln(x-2)+c , then find the value of A+B

Knowledge Check

  • int_(1)^(2)x log x dx =

    A
    `(3)/(4)-(log 4)`
    B
    `(log 4)-(3)/(4)`
    C
    `e^(2)-e`
    D
    `e+e^(2)`
  • Similar Questions

    Explore conceptually related problems

    int(x log(x+1)^(2)dx)

    int(1)/(x(log x)^(2))dx

    int(x dx)/((x-1)(x-2) equal (A) log|((x-1)^2)/(x-2)|+C (B) log|((x-2)^2)/(x-1)|+C (C) log|((x-1)^2)/(x-2)|+C (D) log|(x-1)(x-2)|+C

    If int(1)/(x(x^(5)-1)(x^(5)+1))dx=A log x+B log(x^(5)-1)+C log(x^(5)+1)+D then |A+B-C|=

    int(ln x)/((1+ln x)^(2))dx=

    int(dx)/(sqrt(x^(2)+2x+1))=A log|x+1|+C , x!=-1

    " "int(log x)/((1+x)^(2))dx