Home
Class 12
MATHS
The integral int(sec^2x)/((secx+tanx)^(9...

The integral `int(sec^2x)/((secx+tanx)^(9/2))dx` equals (for some arbitrary constant `K)dot` `-1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K` `1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K` `-1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K` `1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K`

A

`(-1)/((sec x + tan x)^(11//2)){(1)/(11)-1/7 (sec x + tan x)^(2)}+K`

B

`(1)/((sec x + tan x)^(11//2)){(1)/(11)-1/7 (sec x + tan x)^(2)}+K`

C

`(-1)/((sec x + tan x)^(11//2)){(1)/(11)+1/7 (sec x + tan x)^(2)}+K`

D

`(1)/((sec x + tan x)^(11//2)){(1)/(11)+1/7 (sec x + tan x)^(2)}+K`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

The integral int (sec^2x)/(secx+tanx)^(9/2)dx equals to (for some arbitrary constant K ) (A) -1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (B) 1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (C) -1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K (D) 1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K

int(secx+tanx)^(2)dx=

int(secx)/(log(secx+tanx))dx=

int(tanx)/(secx+tanx)dx=

int((secx)/(secx-tanx))dx equals

(secx-1)(secx+1)

tan^(-1)(secx+tanx)

int(1)/(a secx+b tanx)dx=