Home
Class 12
MATHS
Let O be the origin and let PQR be an ar...

Let O be the origin and let PQR be an arbitrary triangle. The point S is such that `bar(OP)*bar(OQ)+bar(OR)*bar(OS)=bar(OR)*bar(OP)+bar(OQ)*bar(OS)=bar(OQ)*bar(OR)+bar(OP)*bar(OS)` Then the triangle PQR has S as its

A

centroid

B

orthogonal

C

incentre

D

circumcentre

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|18 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If [bar(a)+2bar(b)2bar(b)+bar(c)5bar(c)+bar(a)]=k[bar(a)bar(b)bar(c)]

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

(bar(a)+bar(b))xx(bar(a)-bar(b))+(bar(b)-bar(c))xx(bar(b)-bar(c))+(bar(c)+bar(a))(bar(c)-bar(a))=

(bar(a)-bar(d))*(bar(b)-bar(c))+(bar(b)-bar(d))*(bar(c)-bar(a))+(bar(c)-bar(d))*(bar(a)-bar(b))=

(bar(a)+bar(b))xx(bar(a)-bar(b))+(bar(b)+bar(c))xx(bar(b)-bar(c))+(bar(c)+bar(a))xx(bar(c)-bar(a))=

If bar(u)=bar(a)+bar(b),bar(v)=bar(a)-bar(b),|bar(a)|=|bar(b)|=2 then |bar(u)xxbar(v)|=

The reciprocal of bar(a) where bar(a)=-bar(i)+bar(j)+bar(k),bar(b)=bar(i)-bar(j)+bar(k),bar(c)=bar(i)+bar(j)+bar(k) is

([[bar(a),bar(b),bar(c)]])/([[bar(b),bar(a),bar(c)]]) =

|bar(b)|bar(a)+|bar(a)|bar(b) and |bar(b)|bar(a)-|bar(a)|bar(b) are orthogonal to each other

If bar(p)=bar(a)+bar(b),bar(q)=bar(a)-bar(b),|bar(a)|=|bar(b)|=r , then |bar(p)timesbar(q)| =