Home
Class 12
MATHS
tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))is eq...

`tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))`is equal to
(A) `pi/2`
(B) `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`

Text Solution

AI Generated Solution

To solve the expression \( \tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\left(\frac{x-y}{x+y}\right) \), we can use the properties of inverse tangent functions. ### Step-by-Step Solution: 1. **Use the formula for the difference of two inverse tangents**: The formula for the difference of two inverse tangents is given by: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.4|25 Videos
  • LINEAR PROGRAMMING

    NCERT|Exercise SOLVED EXAMPLES|11 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is (A) (pi)/(2)(B)(pi)/(3)(C)(pi)/(4)(D)(pi)/(4) or 3(pi)/(4) is (A) (pi)/(2)(B)

Prove that tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is (pi)/(4) and Not(-3 pi)/(4)

If tan^(-1)x+tan^(-1)y=pi/4 , then

If tan^(-1)x+tan^(-1)y=(pi)/(4), then (1+x)(1+y) is equal to

If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)) , then alpha-beta= pi/6 (b) pi/3 (c) pi/2 (d) -pi/3

If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to 4tan^(-1)x (b) 0 (c) pi/2 (d) pi

The value of int_-1^3 [tan^-1(x/(x^2+1))+tan^-1((x^2+1)/x)]dx= (A) pi/2 (B) 2pi (C) pi (D) pi/4

Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is (a) ((pi)/(4),(3 pi)/(4))( b) [(pi)/(4),(3 pi)/(4)]( c) {(pi)/(4),(3 pi)/(4)}(d) none of these