Home
Class 12
MATHS
Find the value of tan^(-1)(tan(3pi)/4)...

Find the value of `tan^(-1)(tan(3pi)/4)`

Text Solution

AI Generated Solution

To find the value of \(\tan^{-1}(\tan(3\pi/4))\), we need to use the properties of the inverse trigonometric functions and the periodicity of the tangent function. Here is the step-by-step solution: 1. **Identify the range of the inverse tangent function:** The range of \(\tan^{-1}(x)\) is \((- \frac{\pi}{2}, \frac{\pi}{2})\). 2. **Express the given angle in terms of a principal angle:** The given angle is \(\frac{3\pi}{4}\). We need to express this angle in the range \((- \frac{\pi}{2}, \frac{\pi}{2})\). ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Find the value of tan^(-1)(tan'(2pi)/(3)) .

Find the value of tan^(-1) (-tan.(13pi)/(8)) + cot^(-1) (-cot((9pi)/(8)))

Knowledge Check

  • Principal value of tan^(-1)[tan((3pi)/(4))] is

    A
    `pi/4`
    B
    `(3pi)/(4)`
    C
    `-(pi)/(4)`
    D
    `-(3pi)/(4)`
  • Principal value of tan^(-1)[tan((3pi)/4)] is

    A
    `pi/4`
    B
    `(3pi)/4`
    C
    `-pi/4`
    D
    `-(3pi)/4`
  • Similar Questions

    Explore conceptually related problems

    Find the value of tan^(-1)("tan"(7pi)/(6))+ cos^(-1)("cos"(7pi)/(6))

    Find the value of : tan^(-1){tan(-(7pi)/8)}

    Write the value of tan^(-1){tan((15pi)/4)}

    Write the value of cos^(-1)(tan(3pi)/4) .

    tan^(-1)[ tan(-(3 pi)/(4))]

    Write the principal value of tan^(-1)[tan(3 pi)/(4)]