Home
Class 12
MATHS
IF A=[{:(1,-2,1),(0,1,-1),(3,-1,1):}] th...

IF `A=[{:(1,-2,1),(0,1,-1),(3,-1,1):}]` then show that `A^3-3A^2-A-31=O`

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    SRISIRI PUBLICATION|Exercise II VSAQ,SAQ,LAQ|13 Videos
  • MATRICES

    SRISIRI PUBLICATION|Exercise MISCELLANEOUS|29 Videos
  • MATRICES

    SRISIRI PUBLICATION|Exercise SAPAR PAPER QUESTIONS|32 Videos
  • MATHEMATICAL INDUCTION

    SRISIRI PUBLICATION|Exercise LONG ANSWER QUESTIONS|19 Videos
  • PAIR OF LINES

    SRISIRI PUBLICATION|Exercise MISCELLANEOUS|2 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,-2,1),(0,1,-1),(3,-1,1):}] then show that A^3-3A^2-A-3I=O , where I is unit matrix of order 3

IF A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] then show that A^-1=A^3 .

IF 3A=[{:(1,2,2),(2,1,-2),(-2,2,-1):}] then show that A^-1=A' .

IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adj A=3A^T . Also find A^-1 .

IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adjA=3A^T Also find A^-1

If A=[(1,2,3),(3,-2,1),(4,2,1)] , then show that A^(3)-23A-40I=0

If A=[(1,2,1),(0,1,-1),(3,-1,1)] then A^(3)-3A^(2)-A+9I=

If A= {:[( 1,0,1),(0,1,2),(0,0,4)]:} ,then show that |3A| =27|A|

If A={:[(1,0,-2),(-2,-1,2),(3,4,1)]:} then A^(-1) =

If A=[(1,0,2),(2,1,0),(3,2,1)] then 3A^(-1)=

SRISIRI PUBLICATION-MATRICES-SHORT ANSWER TYPE QUESTIONS
  1. IF A=[{:(1,-2,1),(0,1,-1),(3,-1,1):}] then show that A^3-3A^2-A-31=O

    Text Solution

    |

  2. IF A=[{:(3,0,0),(0,3,0),(0,0,3):}] , then find A^4.

    Text Solution

    |

  3. If I = [(1,0),(0,1)] and E = [(0,1),(0,0)] then show that (aI + bE)^(3...

    Text Solution

    |

  4. IF theta-phi=pi/2 , then show that [{:(cos^2theta,costhetasintheta),(c...

    Text Solution

    |

  5. Show that |{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a)

    Text Solution

    |

  6. Show that |{:(bc,b-c,1),(ca,c+a,1),(ab,a+b,1):}|=(a-b)(b-c)(c-a)

    Text Solution

    |

  7. Show that |(b+c,c+a,a+b),(a+b,b+c,c+a)(a,b,c)|=a^(3)+b^(3)+c^(3)-3abc.

    Text Solution

    |

  8. Prove that |{:(y+z,x,x),(y,z+x,y),(z,z,x+y):}|=4xyz

    Text Solution

    |

  9. IF |{:(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3):}|=0 , then show that ...

    Text Solution

    |

  10. Without expanding the determinant , prove that |{:(a,a^2,bc),(b,b^2,ca...

    Text Solution

    |

  11. Without expanding the determinant , prove that |{:(ax,by,cz),(x^2,y^2,...

    Text Solution

    |

  12. Without expanding the determinant, prove that |{:(1,bc,b+c),(1,ca,c+a)...

    Text Solution

    |

  13. Show that |{:(a-b,b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c):}|=0

    Text Solution

    |

  14. Show that |{:(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab):}|=0

    Text Solution

    |

  15. Let A and B be invertible matrices then prove that (AB)^-1=B^-1A^-1.

    Text Solution

    |

  16. Find the adjoint and the inverse of the matrix A=[{:(1,3,3),(1,4,3),(1...

    Text Solution

    |

  17. Show that the matrix A=[{:(1,2,1),(3,2,3),(1,1,2):}] is non-singular a...

    Text Solution

    |

  18. IF abc ne 0, find the inverse of [{:(a,0,0),(0,b,0),(0,0,c):}]

    Text Solution

    |

  19. IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adj A=3A^T. Als...

    Text Solution

    |

  20. IF A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] then show that A^-1=A^3.

    Text Solution

    |