Topper's Solved these Questions
MATRICES
SRISIRI PUBLICATION|Exercise II VSAQ,SAQ,LAQ|13 VideosMATRICES
SRISIRI PUBLICATION|Exercise MISCELLANEOUS|29 VideosMATRICES
SRISIRI PUBLICATION|Exercise SAPAR PAPER QUESTIONS|32 VideosMATHEMATICAL INDUCTION
SRISIRI PUBLICATION|Exercise LONG ANSWER QUESTIONS|19 VideosPAIR OF LINES
SRISIRI PUBLICATION|Exercise MISCELLANEOUS|2 Videos
Similar Questions
Explore conceptually related problems
SRISIRI PUBLICATION-MATRICES-SHORT ANSWER TYPE QUESTIONS
- IF A=[{:(1,-2,1),(0,1,-1),(3,-1,1):}] then show that A^3-3A^2-A-31=O
Text Solution
|
- IF A=[{:(3,0,0),(0,3,0),(0,0,3):}] , then find A^4.
Text Solution
|
- If I = [(1,0),(0,1)] and E = [(0,1),(0,0)] then show that (aI + bE)^(3...
Text Solution
|
- IF theta-phi=pi/2 , then show that [{:(cos^2theta,costhetasintheta),(c...
Text Solution
|
- Show that |{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a)
Text Solution
|
- Show that |{:(bc,b-c,1),(ca,c+a,1),(ab,a+b,1):}|=(a-b)(b-c)(c-a)
Text Solution
|
- Show that |(b+c,c+a,a+b),(a+b,b+c,c+a)(a,b,c)|=a^(3)+b^(3)+c^(3)-3abc.
Text Solution
|
- Prove that |{:(y+z,x,x),(y,z+x,y),(z,z,x+y):}|=4xyz
Text Solution
|
- IF |{:(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3):}|=0 , then show that ...
Text Solution
|
- Without expanding the determinant , prove that |{:(a,a^2,bc),(b,b^2,ca...
Text Solution
|
- Without expanding the determinant , prove that |{:(ax,by,cz),(x^2,y^2,...
Text Solution
|
- Without expanding the determinant, prove that |{:(1,bc,b+c),(1,ca,c+a)...
Text Solution
|
- Show that |{:(a-b,b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c):}|=0
Text Solution
|
- Show that |{:(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab):}|=0
Text Solution
|
- Let A and B be invertible matrices then prove that (AB)^-1=B^-1A^-1.
Text Solution
|
- Find the adjoint and the inverse of the matrix A=[{:(1,3,3),(1,4,3),(1...
Text Solution
|
- Show that the matrix A=[{:(1,2,1),(3,2,3),(1,1,2):}] is non-singular a...
Text Solution
|
- IF abc ne 0, find the inverse of [{:(a,0,0),(0,b,0),(0,0,c):}]
Text Solution
|
- IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adj A=3A^T. Als...
Text Solution
|
- IF A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] then show that A^-1=A^3.
Text Solution
|