Home
Class 12
MATHS
Prove that cos[Tan^(-1){sin(Cot^(-1)x)}]...

Prove that `cos[Tan^(-1){sin(Cot^(-1)x)}] = sqrt((x^(2)+1)/(x^(2)+2))`

Text Solution

Verified by Experts

The correct Answer is:
`sqrt((1+x^(2))/(2+x^(2)))`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    SRISIRI PUBLICATION|Exercise SAQ (1D Star Q)|22 Videos
  • HYPERBOLIC FUNCTIONS

    SRISIRI PUBLICATION|Exercise SPQ|8 Videos
  • IPE SCANNER (TEXTUAL BITS)

    SRISIRI PUBLICATION|Exercise APPLICATIONS OF DERIVATIVES|48 Videos

Similar Questions

Explore conceptually related problems

Assertion: sin(cot^(-1)(1/2))=tan(cos^(-1)x) then the value of x=(sqrt(5))/3 Reason R: cos(tan^(-1)(sin(cot^(-1)x)))=sqrt(((1+x^(2))/(2+x^(2))))

sin[cot^(-1){cos(tan^(-1)x)}]=

tan^(-1)(x+sqrt(1+x^(2)))=

Prove that sin[Cot^(-1) (2x)/(1-x^2)+Cos^(-1)((1-x^(2))/(1+x^(2)))]=1 .

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

Sin[2Cos^(-1){Cot(2tan^(-1)x)}]=0 Find x

sin(Cot^(-1)(cos(Tan^(-1)x)))=

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/(sqrt(3))

int (tan (sin^(-1)x))/(sqrt(1-x^(2)))dx=

cos[2Sin^(-1)sqrt((1-x)/2)]=