Home
Class 12
MATHS
Let f={(1,a),(2,c),(4,d),(3,b)} and g^(-...

Let `f={(1,a),(2,c),(4,d),(3,b)} and g^(-1) = {(2,a),(4,b),(1,c),(3,d)}` then show that `(gof)^(-1) = f^(-1) og^(-1)`.

Answer

Step by step text solution for Let f={(1,a),(2,c),(4,d),(3,b)} and g^(-1) = {(2,a),(4,b),(1,c),(3,d)} then show that (gof)^(-1) = f^(-1) og^(-1). by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • IPE: MARCH-2015 [TS]

    SRISIRI PUBLICATION|Exercise Section-B|7 Videos
  • IPE-MARCH-2016[TS]

    SRISIRI PUBLICATION|Exercise Section-c(III . Answer any five of the following LAQs:)|6 Videos
  • IPE: MARCH-2016 [AP]

    SRISIRI PUBLICATION|Exercise Section-C (LAQ)|7 Videos

Similar Questions

Explore conceptually related problems

Let A = {1.2,3} , B = {a,b,c} , C = (p,q,r) If :A to B, g : B to C are defined by f = {(1,a), (2,c), (3, b) }, g = {(a,q), (b,r), (c,p)} then show that f ^(-1) og ^(-1) = (gof) ^(-1)

Let A={1,2,3},B={a,b,c),C={p,q,r}. If f:A to B, g: B to C are defined by f={(1,a),(2,c),(3,b)},g={a,q),(b,r),(c,p)} then show that f^(-1)og^(-1)=(gof)^(-1) .

If f={(1,a), (2, b), (1, b), (3,c), (1,c)}, g=(a, p), (b,r), (c,q), (c,p)} , then (gof)^(-1)=

If f={(a, 0), (b, 2), (c, -3)}, g={(a, -1), (b, 1), (c, 2)} then 2f-3g=

If f (x ) = e ^(x) and g (x) = log _(e) x, then show that f og = go f and find f ^(-1) and g ^(-1).

Consider f: {1,2,3} to {a,b,c} and g: {a,b,c} to {apple, ball, cat} defined as f (1) =a, f (2) =b, f (3)=c, g (a) = apple, g (b) = ball and g (c )= cat. Show that f, g and gof are invertible. Find out f ^(-1) , g ^(-1) and ("gof")^(-1) and show that ("gof") ^(-1) =f ^(-1) og ^(-1).

If A={1,2,3},B=(alpha,beta,gamma),c=(p,q,r) and (f:A to B,g:B to C are defined by f={(1,alpha),(2,gamma),(3,beta)},g={(alpha,q),(gamma,p)} then show that f and g are bijective functions and (gof)^(-1)=f^(-1)og^(-1).

If |{:(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3)):}| and |{:(a,a^(2),1),(b,b^(2),1),(c,c^(2),1):}|!=0 then show that abc=-1 .

If f : A to B and g : B to C are bijective functions then (gof ) ^(-1) = f ^(-1) o g ^(-1)

If f={(a, 1), (b, -2), (c, 3)}, g={(a, -2), (b, 0), (c, 1)} then f^(2)+g^(2)=