Home
Class 12
MATHS
If A(5,8),B(-3,4) and C(7,k) are vertice...

If A(5,8),B(-3,4) and C(7,k) are vertices of `triangleABC` and `m angleB = 90^(@)`, then k=

A

16

B

`-12`

C

`-16`

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that angle \( B \) in triangle \( ABC \) is \( 90^\circ \), we will use the Pythagorean theorem. The coordinates of the points are given as follows: \( A(5, 8) \), \( B(-3, 4) \), and \( C(7, k) \). ### Step 1: Use the Pythagorean theorem Since \( \angle B = 90^\circ \), we can apply the Pythagorean theorem: \[ AC^2 = AB^2 + BC^2 \] ### Step 2: Calculate \( AB^2 \) Using the distance formula, the distance \( AB \) is calculated as: \[ AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Substituting the coordinates of points \( A \) and \( B \): \[ AB = \sqrt{((-3) - 5)^2 + (4 - 8)^2} = \sqrt{(-8)^2 + (-4)^2} = \sqrt{64 + 16} = \sqrt{80} \] Thus, \[ AB^2 = 80 \] ### Step 3: Calculate \( BC^2 \) Now, we calculate the distance \( BC \): \[ BC = \sqrt{(7 - (-3))^2 + (k - 4)^2} = \sqrt{(7 + 3)^2 + (k - 4)^2} = \sqrt{10^2 + (k - 4)^2} = \sqrt{100 + (k - 4)^2} \] Thus, \[ BC^2 = 100 + (k - 4)^2 \] ### Step 4: Calculate \( AC^2 \) Next, we calculate the distance \( AC \): \[ AC = \sqrt{(7 - 5)^2 + (k - 8)^2} = \sqrt{(2)^2 + (k - 8)^2} = \sqrt{4 + (k - 8)^2} \] Thus, \[ AC^2 = 4 + (k - 8)^2 \] ### Step 5: Set up the equation Now we can set up the equation using the Pythagorean theorem: \[ AC^2 = AB^2 + BC^2 \] Substituting the values we found: \[ 4 + (k - 8)^2 = 80 + (100 + (k - 4)^2) \] ### Step 6: Simplify the equation Expanding both sides: \[ 4 + (k^2 - 16k + 64) = 80 + 100 + (k^2 - 8k + 16) \] This simplifies to: \[ k^2 - 16k + 68 = 180 + k^2 - 8k + 16 \] Now, cancel \( k^2 \) from both sides: \[ -16k + 68 = 196 - 8k \] ### Step 7: Rearranging the equation Rearranging gives: \[ -16k + 8k = 196 - 68 \] \[ -8k = 128 \] \[ k = -16 \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{-16} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Circles and Conics|2 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Sets, Relations and Functions|2 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Trignometric Functions of Compound Angles|1 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise EVALUATION TEST|13 Videos
  • MODEL QUESTION PAPER-I

    TARGET PUBLICATION|Exercise MCQs|48 Videos

Similar Questions

Explore conceptually related problems

If A(5, 2), B(2, -2) and C(-2, t) are the vertices of a right triangle with angleB = 90^(@) then find the value of t.

If the points A (2,9), B (a,5) and C (5,5) are the vertices of a triangleABC . Right-angled at B, then find the values of a and hence the area of triangleABC .

Knowledge Check

  • In triangleABC , if a=3, b=4, c=5, then sin2B=

    A
    `(3)/(5)`
    B
    `(4)/(5)`
    C
    `(24)/(25)`
    D
    `(12)/(25)`
  • In triangleABC, if a=2, b=1, c=sqrt(3) , then angleB=

    A
    `90^(@)`
    B
    `60^(@)`
    C
    `30^(@)`
    D
    `45^(@)`
  • The vertices of triangleABC are A(2,2), B(-4,-4) and C(5,-8). Find the length of a median of a triangle through the point C.

    A
    `sqrt(65)`
    B
    `sqrt(117)`
    C
    `sqrt(85)`
    D
    `sqrt(116)`
  • Similar Questions

    Explore conceptually related problems

    In A (h,-5) , B (-1,-6) and C (4,k) are the co-ordinates of vertices of triangle ABC whose centroid is G (2,-4) , then the value of k is

    If the points A(6,1),B(8,2),C(9,4) and D(k,p) are the vertices of a parallelogram taken in order,then find the values of k and p

    When (0,0) is shifted to (3,-3) then the points P(5,5),Q(-2,4) and R(7,-7) are changed as A,B,C and if the area of triangle ABC is k then (86)/(k) is

    A(h,-6),B(2,3) and C(-6,k) are the coordinates of vertices of a triangle whose centroid is G(1,5). Find h and k.

    In triangleABC , if a^(2)+c^(2)-b^(2)=ac , then angleB=