Home
Class 12
MATHS
STATEMENT-1 : intx^(x)(1+logx)dx=x^(x)+C...

STATEMENT-1 : `intx^(x)(1+logx)dx=x^(x)+C`
and
STATEMENT-2 : `(d)/(dx)x^(x)=x^(x)(1+logx)`

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explantation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explantation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Integar Type Questions|7 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Multiple True-False Questions|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Linked Comprehension Type Questions|7 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(x^((1)/(x)))

(d)/(dx)((x^(2))/(x-1))=

(d)/(dx)((logx)/(x^(2)))=

(d)/(dx)[(sin x)/(1+cos x)]=

(d)/(dx){(x^(2)-x+1)/(x^(2)+x+1)}=

(d)/(dx)(int(1)/(x^(3)(x-1))dx)=

(d)/(dx)csc^(-1)((1+x^(2))/(2x))

Statement-1: int(sinx)^x(xcotx+logsinx)dx=x(sinx)^x Statement-2: d/dx(f(x))^(g(x))=(f(x))^(g(x))d/dx[g(x)logf(x)] (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

Find (d)/(dx)cot^(-1)((1-x^(2))/(2x))

(d)/(dx)[sin^(-1)((2^(x+1))/(1+4^(x)))]