Home
Class 10
MATHS
The angles of trinalge are in the ratio ...

The angles of trinalge are in the ratio `2:3:4`. What is the degree measures of the largest angle?

A

`40`

B

`80`

C

`90`

D

`120`

Text Solution

AI Generated Solution

The correct Answer is:
To find the degree measures of the largest angle in a triangle where the angles are in the ratio of 2:3:4, we can follow these steps: ### Step-by-Step Solution: 1. **Define the Angles in Terms of a Variable:** Let the angles of the triangle be represented as: - Angle A = 2x - Angle B = 3x - Angle C = 4x 2. **Use the Triangle Angle Sum Property:** The sum of the angles in a triangle is always 180 degrees. Therefore, we can set up the equation: \[ A + B + C = 180^\circ \] Substituting the expressions for A, B, and C, we get: \[ 2x + 3x + 4x = 180^\circ \] 3. **Combine Like Terms:** Combine the terms on the left side: \[ 9x = 180^\circ \] 4. **Solve for x:** To find the value of x, divide both sides of the equation by 9: \[ x = \frac{180^\circ}{9} = 20^\circ \] 5. **Calculate Each Angle:** Now that we have the value of x, we can find each angle: - Angle A = 2x = 2(20^\circ) = 40^\circ - Angle B = 3x = 3(20^\circ) = 60^\circ - Angle C = 4x = 4(20^\circ) = 80^\circ 6. **Identify the Largest Angle:** Among the angles calculated, the largest angle is: \[ \text{Largest Angle} = 80^\circ \] ### Final Answer: The degree measure of the largest angle in the triangle is **80 degrees**. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LINEAR EQUATIONS

    KAPLAN|Exercise Multiple Choice Question|20 Videos
  • MATH TEST -02

    KAPLAN|Exercise Multiple Choice Question|36 Videos

Similar Questions

Explore conceptually related problems

The angles of a triangle are in the ratio 1:2:3 . What is the sine of the smallest angle?

The angles of a triangle are in the ratio 2:3: 7. The measure of the largest angle is (a) 84^0 (b) 91^0 105^0 (d) 98^0

Knowledge Check

  • In the figure, the angles A, B, C of the triangle are in the ratio 5 : 12 : 13. What is the measure of angle A?

    A
    15
    B
    27
    C
    30
    D
    34
  • Similar Questions

    Explore conceptually related problems

    If the measures of angles of a triangle are in the ratio of 3:4:5, what is the measure of the smallest angle of the triangle? (a) 25^0 (b) 30^0 (c) 45^0 (d) 60^0

    The angles of a triangle are in the ratio 1:2:3. The measure of the largest angle is: (a) 30^0 (b) 60^0 (c) 90^0 (d) 120^0

    The angles of a triangle are in the ratio 3:5:4 . Find the measure of each of the angles.

    If the angles of a triangle are in the ratio 2:3:4 . determine three angles.

    If the angles of a triangle are in the ratio 2:3:4 . determine three angles.

    If the angle of a triangle are in the ratio 2:3:4, determine three angles.

    The angles of a triangle are in the ratio 4 : 5 : 6 , find their measures in degrees .