Home
Class 12
MATHS
Let Sigma(i=1)^(n) vec(a(i))=0 , where |...

Let `Sigma_(i=1)^(n) vec(a_(i))=0` , where `|vec(a_(i))|=1AAi`, then `Sigma_(1leiltjlen)Sigmavec(a_(i))vec(a_(j))=`

A

n

B

`-n`

C

`(n)/(2)`

D

`(-n)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given condition: \[ \sum_{i=1}^{n} \vec{a_i} = 0 \] where \(|\vec{a_i}| = 1\) for all \(i\). We need to find: \[ \sum_{1 \leq i < j \leq n} \vec{a_i} \cdot \vec{a_j} \] ### Step 1: Understanding the Dot Product The dot product \(\vec{a_i} \cdot \vec{a_j}\) can be expressed in terms of the angle \(\theta\) between the two vectors: \[ \vec{a_i} \cdot \vec{a_j} = |\vec{a_i}| |\vec{a_j}| \cos(\theta) = 1 \cdot 1 \cdot \cos(\theta) = \cos(\theta) \] ### Step 2: Squaring the Sum of Vectors Since \(\sum_{i=1}^{n} \vec{a_i} = 0\), we can square this equation: \[ \left( \sum_{i=1}^{n} \vec{a_i} \right) \cdot \left( \sum_{j=1}^{n} \vec{a_j} \right) = 0 \] Expanding this gives: \[ \sum_{i=1}^{n} \vec{a_i} \cdot \vec{a_i} + \sum_{i \neq j} \vec{a_i} \cdot \vec{a_j} = 0 \] ### Step 3: Evaluating the Terms 1. The term \(\sum_{i=1}^{n} \vec{a_i} \cdot \vec{a_i}\) is simply the sum of the squares of the magnitudes of the vectors: \[ \sum_{i=1}^{n} \vec{a_i} \cdot \vec{a_i} = n \] since each \(|\vec{a_i}| = 1\). 2. The term \(\sum_{i \neq j} \vec{a_i} \cdot \vec{a_j}\) can be rewritten as: \[ \sum_{i=1}^{n} \sum_{j=1}^{n} \vec{a_i} \cdot \vec{a_j} - \sum_{i=1}^{n} \vec{a_i} \cdot \vec{a_i} = \sum_{i=1}^{n} \sum_{j=1}^{n} \vec{a_i} \cdot \vec{a_j} - n \] ### Step 4: Setting Up the Equation Putting it all together, we have: \[ n + \sum_{i \neq j} \vec{a_i} \cdot \vec{a_j} = 0 \] This leads to: \[ \sum_{i \neq j} \vec{a_i} \cdot \vec{a_j} = -n \] ### Step 5: Relating to the Required Sum The sum \(\sum_{1 \leq i < j \leq n} \vec{a_i} \cdot \vec{a_j}\) can be related to \(\sum_{i \neq j} \vec{a_i} \cdot \vec{a_j}\): \[ \sum_{i \neq j} \vec{a_i} \cdot \vec{a_j} = 2 \sum_{1 \leq i < j \leq n} \vec{a_i} \cdot \vec{a_j} \] Thus, we can write: \[ 2 \sum_{1 \leq i < j \leq n} \vec{a_i} \cdot \vec{a_j} = -n \] ### Step 6: Solving for the Required Sum Dividing both sides by 2 gives: \[ \sum_{1 \leq i < j \leq n} \vec{a_i} \cdot \vec{a_j} = -\frac{n}{2} \] ### Final Result Thus, the final answer is: \[ \sum_{1 \leq i < j \leq n} \vec{a_i} \cdot \vec{a_j} = -\frac{n}{2} \] ---

To solve the problem, we start with the given condition: \[ \sum_{i=1}^{n} \vec{a_i} = 0 \] where \(|\vec{a_i}| = 1\) for all \(i\). We need to find: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

if sum_(i=1)^(n)a_(i)=0, where |a_(i)|=1,AA i then the value of sum_(1

If vec(a_(1)) and vec(a_(2)) are two non-collinear unit vectors and if |vec(a_(1)) + vec(a_(2))|=sqrt(3) , then the value of (vec(a_(1))-vec(a_(2))). (2 vec(a_(1))+vec(a_(2))) is :

Assertion: Given that prod_(i=1)^(n)a_(i)=1 where a_(1),a_(2),a_(3)a_(i)in R then minimum value of sum_(i=1)^(n)a_(i) integrs is greater than or equal to their geometric mean.

If (x + a_(1)) (x + a_(2)) (x + a_(3)) …(x + a_(n)) = x^(n) + S_(1) x^(n-1) + S_(2) x^(n-2) + …+ S_(n) where , S_(1) = sum_(i=0)^(n) a_(i), S_(2) = (sumsum)_(1lei lt j le n) a_(i) a_(j) , S_(3) (sumsumsum)_(1le i ltk le n)a_(i) a_(j) a_(k) and so on . Coefficient of x^(7) in the expansion of (1 + x)^(2) (3 + x)^(3) (5 + x)^(4) is

Consider the equations of the straight lines given by : L_(1) : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk) L_(2) : vec(r) = (2 hati - hatj - hatk) + mu ( 2 hati + hatj + 2 hatk) . If vec(a_(1))= hati + 2 hatj + hatk, " " vec(b_(1)) = hati - hatj + hatk , vec(a_(2)) = 2 hat(i) - hatj - hatk, vec(b_(2)) = 2 hati + hatj + 2 hatk , then find : (i) vec(a_(2)) - vec(a_(1)) " " (ii) vec(b_(2)) - vec(b_(1)) (iii) vec(b_(1))xx vec(b_(2)) " " (iv) vec(a_(1)) xx vec(a_(2)) (v) (vec(b_(1)) xx vec(b_(2))).(vec(a_(1)) xxvec(a_(2))) (vi) the shortest distance between L_(1) and L_(2) .

If a_(i) gt 0 AA I in N such that prod_(i=1)^(n) a_(i) = 1 , then prove that (a + a_(1)) (1 + a_(2)) (1 + a_(3)) .... (1 + a_(n)) ge 2^(n)

If sum_(j=1)^(21)a_(j)=693 ,where a_(1),a_(2),......,a_(21) are in AP., then sum_(i=0)^(10)a_(2i+1) is...

If vec(a_(1)),vec(a_(2)),vec(a_(3)) and vec(b_(1)), vec(b_(2)),vec(b_(3)) be two sets of non - coplanar vectors, such that vec(a_(p)).vec(b_(q))={{:(0,"if",pneq),(4,"if",p=q):}" for "p=1,2,3 and q=1,2,3 , then the value of [vec(a_(1))2vec(a_(2))3vec(a_(3))][(vec(b_(1))+vec(b_(2)),vec(b_(2))+vec(b_(3)),vec(b_(3)),vec(b_(3))+vec(b_(1)))] is equal to

VIBRANT-TEST PAPERS-PART - I : MATHEMATICS
  1. Let Sigma(i=1)^(n) vec(a(i))=0 , where |vec(a(i))|=1AAi, then Sigma(1l...

    Text Solution

    |

  2. Suppose a,b in R. If the equation x^(2)-(2a+b)x+(2a^(2)+b^(2)-b+1//2)=...

    Text Solution

    |

  3. If alpha, beta are roots of x^(2)-2x-1=0, then value of 5alpha^(4)+12b...

    Text Solution

    |

  4. If 3p^(2)=5p+2 and 3q^(2)=5q+2 then the equation whose roots 3p-2p an...

    Text Solution

    |

  5. If 1 - p is a root of the quadratic equation x^(2) + px + 1- p = 0 , ...

    Text Solution

    |

  6. Sum of the series P=(1)/(2sqrt(1)+sqrt(2))+(1)/(3sqrt(2)+2sqrt(3))+......

    Text Solution

    |

  7. If a,b, c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

    Text Solution

    |

  8. Sum of the series Sigma(r=1)^(n) rlog((r+1)/(r)) is

    Text Solution

    |

  9. Suppose for each n in N, 1^(4)+2^(4)+.........n^(4)=an^(5)+bn^(4)+cn^(...

    Text Solution

    |

  10. For any two complex numbers z1,z2 and any real numbers aa n db ,|a z1-...

    Text Solution

    |

  11. If (x+iy)^(1//3)=a+ib, " then " (x)/(a)+(y)/(b) equals

    Text Solution

    |

  12. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  13. If |w|=2, then the set of points x+iy=w-(1)/(w) lie on

    Text Solution

    |

  14. If Delta(1)=|(x,b,b),(a,x,b),(a,a,x)|" and "Delta(2)=|(x,b),(a,x)|, th...

    Text Solution

    |

  15. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  16. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  17. Let A be a 3xx3 matrix such that A [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  18. Let A =[(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity ma...

    Text Solution

    |

  19. If the standard deviation of the binomial distribution (q + p)^16 is 2...

    Text Solution

    |

  20. Suppose I+A is non-singular. Let B=(l+A)^(-1) and C=l-A, then ……. (wh...

    Text Solution

    |

  21. The number of ways of arranging 18 boys so that 3 particular boys are ...

    Text Solution

    |