Home
Class 12
MATHS
Let Sigma(i=1)^(n) vec(a(i))=0 , where |...

Let `Sigma_(i=1)^(n) vec(a_(i))=0` , where `|vec(a_(i))|=1AAi`, then `Sigma_(1leiltjlen)Sigmavec(a_(i))vec(a_(j))=`

A

n

B

`-n`

C

`(n)/(2)`

D

`(-n)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given condition: \[ \sum_{i=1}^{n} \vec{a_i} = 0 \] where \(|\vec{a_i}| = 1\) for all \(i\). We need to find: \[ \sum_{1 \leq i < j \leq n} \vec{a_i} \cdot \vec{a_j} \] ### Step 1: Understanding the Dot Product The dot product \(\vec{a_i} \cdot \vec{a_j}\) can be expressed in terms of the angle \(\theta\) between the two vectors: \[ \vec{a_i} \cdot \vec{a_j} = |\vec{a_i}| |\vec{a_j}| \cos(\theta) = 1 \cdot 1 \cdot \cos(\theta) = \cos(\theta) \] ### Step 2: Squaring the Sum of Vectors Since \(\sum_{i=1}^{n} \vec{a_i} = 0\), we can square this equation: \[ \left( \sum_{i=1}^{n} \vec{a_i} \right) \cdot \left( \sum_{j=1}^{n} \vec{a_j} \right) = 0 \] Expanding this gives: \[ \sum_{i=1}^{n} \vec{a_i} \cdot \vec{a_i} + \sum_{i \neq j} \vec{a_i} \cdot \vec{a_j} = 0 \] ### Step 3: Evaluating the Terms 1. The term \(\sum_{i=1}^{n} \vec{a_i} \cdot \vec{a_i}\) is simply the sum of the squares of the magnitudes of the vectors: \[ \sum_{i=1}^{n} \vec{a_i} \cdot \vec{a_i} = n \] since each \(|\vec{a_i}| = 1\). 2. The term \(\sum_{i \neq j} \vec{a_i} \cdot \vec{a_j}\) can be rewritten as: \[ \sum_{i=1}^{n} \sum_{j=1}^{n} \vec{a_i} \cdot \vec{a_j} - \sum_{i=1}^{n} \vec{a_i} \cdot \vec{a_i} = \sum_{i=1}^{n} \sum_{j=1}^{n} \vec{a_i} \cdot \vec{a_j} - n \] ### Step 4: Setting Up the Equation Putting it all together, we have: \[ n + \sum_{i \neq j} \vec{a_i} \cdot \vec{a_j} = 0 \] This leads to: \[ \sum_{i \neq j} \vec{a_i} \cdot \vec{a_j} = -n \] ### Step 5: Relating to the Required Sum The sum \(\sum_{1 \leq i < j \leq n} \vec{a_i} \cdot \vec{a_j}\) can be related to \(\sum_{i \neq j} \vec{a_i} \cdot \vec{a_j}\): \[ \sum_{i \neq j} \vec{a_i} \cdot \vec{a_j} = 2 \sum_{1 \leq i < j \leq n} \vec{a_i} \cdot \vec{a_j} \] Thus, we can write: \[ 2 \sum_{1 \leq i < j \leq n} \vec{a_i} \cdot \vec{a_j} = -n \] ### Step 6: Solving for the Required Sum Dividing both sides by 2 gives: \[ \sum_{1 \leq i < j \leq n} \vec{a_i} \cdot \vec{a_j} = -\frac{n}{2} \] ### Final Result Thus, the final answer is: \[ \sum_{1 \leq i < j \leq n} \vec{a_i} \cdot \vec{a_j} = -\frac{n}{2} \] ---

To solve the problem, we start with the given condition: \[ \sum_{i=1}^{n} \vec{a_i} = 0 \] where \(|\vec{a_i}| = 1\) for all \(i\). We need to find: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

if sum_(i=1)^(n)a_(i)=0, where |a_(i)|=1,AA i then the value of sum_(1

Assertion: Given that prod_(i=1)^(n)a_(i)=1 where a_(1),a_(2),a_(3)a_(i)in R then minimum value of sum_(i=1)^(n)a_(i) integrs is greater than or equal to their geometric mean.

Knowledge Check

  • If vec(a_(1)) and vec(a_(2)) are two non-collinear unit vectors and if |vec(a_(1)) + vec(a_(2))|=sqrt(3) , then the value of (vec(a_(1))-vec(a_(2))). (2 vec(a_(1))+vec(a_(2))) is :

    A
    `2`
    B
    `3//2`
    C
    `1//2`
    D
    `1`
  • If (x + a_(1)) (x + a_(2)) (x + a_(3)) …(x + a_(n)) = x^(n) + S_(1) x^(n-1) + S_(2) x^(n-2) + …+ S_(n) where , S_(1) = sum_(i=0)^(n) a_(i), S_(2) = (sumsum)_(1lei lt j le n) a_(i) a_(j) , S_(3) (sumsumsum)_(1le i ltk le n)a_(i) a_(j) a_(k) and so on . Coefficient of x^(7) in the expansion of (1 + x)^(2) (3 + x)^(3) (5 + x)^(4) is

    A
    112
    B
    224
    C
    342
    D
    416
  • Let A_(1), A_(2)…….A_(7) be a polygon and a(1), a_(2)……a_(7) be the complex numbers representing vertices A_(1), A_(2)……A_(7) . If |a_(1)|=|a_(2)|=……….|a_(7)=R , then sum_(1le i lt j le 7)|a_(i)+a_(j)|^(2)

    A
    greater than `30R^(2)`
    B
    has minimum value as `35R^(2)`
    C
    has its minimum value in `(25R^(2),45R^(2))`
    D
    is less than `45R^(2)`
  • Similar Questions

    Explore conceptually related problems

    Consider the equations of the straight lines given by : L_(1) : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk) L_(2) : vec(r) = (2 hati - hatj - hatk) + mu ( 2 hati + hatj + 2 hatk) . If vec(a_(1))= hati + 2 hatj + hatk, " " vec(b_(1)) = hati - hatj + hatk , vec(a_(2)) = 2 hat(i) - hatj - hatk, vec(b_(2)) = 2 hati + hatj + 2 hatk , then find : (i) vec(a_(2)) - vec(a_(1)) " " (ii) vec(b_(2)) - vec(b_(1)) (iii) vec(b_(1))xx vec(b_(2)) " " (iv) vec(a_(1)) xx vec(a_(2)) (v) (vec(b_(1)) xx vec(b_(2))).(vec(a_(1)) xxvec(a_(2))) (vi) the shortest distance between L_(1) and L_(2) .

    If a_(i) gt 0 AA I in N such that prod_(i=1)^(n) a_(i) = 1 , then prove that (a + a_(1)) (1 + a_(2)) (1 + a_(3)) .... (1 + a_(n)) ge 2^(n)

    If (1+X+x^2)^n = Sigma_(r=0)^(2n) a_(r) x^r then prove that (a) a_(r)=a_(2n-r) (b ) Sigma_(r=0)^(n-1) a_(r)=1/2 (3^n-a_n)

    If sum_(j=1)^(21)a_(j)=693 ,where a_(1),a_(2),......,a_(21) are in AP., then sum_(i=0)^(10)a_(2i+1) is...

    If vec(a_(1)),vec(a_(2)),vec(a_(3)) and vec(b_(1)), vec(b_(2)),vec(b_(3)) be two sets of non - coplanar vectors, such that vec(a_(p)).vec(b_(q))={{:(0,"if",pneq),(4,"if",p=q):}" for "p=1,2,3 and q=1,2,3 , then the value of [vec(a_(1))2vec(a_(2))3vec(a_(3))][(vec(b_(1))+vec(b_(2)),vec(b_(2))+vec(b_(3)),vec(b_(3)),vec(b_(3))+vec(b_(1)))] is equal to