Home
Class 12
MATHS
Sigma(r=0)^(oo) tan^(-1).(2)/(1+r^(2)+2r...

`Sigma_(r=0)^(oo) tan^(-1).(2)/(1+r^(2)+2r)` is equal to

A

`(pi)/(2)`

B

`(3pi)/(4)`

C

`pi`

D

`(pi)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
C

`f(theta)=underset(1)overset(theta^(2))(int)cos^(3)xcosecx sin(theta^(2))dx`
`f(theta)=sin(theta^(2))underset(1)overset(theta^(2))(int)cos^(3)x cos ecx dx`
`f'(theta)=(2theta)cos(theta^(2))underset(1)overset(theta^(2))(int)cos^(3)xcos ecx dx+sin(theta^(2))(2theta)cos^(3)(theta^(2))cosec(theta^(2))`
`impliesf'(sqrt((pi)/(3)))=sqrt((pi)/(3))underset(1)overset(pi//3)(int)cos^(3)x cos ecx dx +(1)/(4)sqrt((pi)/(3))`
`implies(3)/(2sqrt(pi))f'(sqrt((pi)/(3)))=sqrt(3)/(2)underset(1)overset(pi//3)(int)cos^(3)xcos ecx dx + (sqrt(3))/(8)`
`implies(3)/(2sqrt(pi))f'(sqrt((pi)/(3)))=f (sqrt((pi)/(3)))+(sqrt(3))/(8)`
`implies (3)/(2sqrt(pi))f'(sqrt((pi)/(3)))-f(sqrt((pi)/(3)))=(sqrt(3))/(8)`
`impliesk=(sqrt(3))/(8)implies64k^(2)=3`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

lim_(x to oo ) tan { sum_(r=1)^(n) tan^(-1) ((1)/( 1 +r +r^2))} is equal to ________.

sum_(i=1)^(oo)tan^(-1)((1)/(2r^(2)))=

Knowledge Check

  • Sigma_(r=1)^(oo) tan^(-1) (2/((r +2))) is

    A
    `pi - ( tan^(-1) 2 + tan ^(-1) 3) `
    B
    ` pi/4`
    C
    ` (7pi)/4`
    D
    ` pi + ( tan^(-1) 2 + tan^(-1) 3)`
  • The value of S= Sigma_(n=1)^(oo)"tan"^(-1) (2n)/(n^(4) + n^(2) +2) is equal to

    A
    `(pi)/(2)`
    B
    `pi`
    C
    `(pi)/(4)`
    D
    None of these
  • sum_(r=1)^(n)tan^(-1)((2^(r-1))/(1+2^(2r-1))) is equal to:

    A
    ` tan^(-1)(2^(n))`
    B
    ` tan^(-1)(2^(n))- (pi)/(4) `
    C
    ` tan^(-1)(2^(n+1))`
    D
    ` tan^(-1)(2^(n+1))- (pi)/(4) `
  • Similar Questions

    Explore conceptually related problems

    sum_(r=1)^(n)tan^(-1)((2^(r-1))/(1+2^(2r-1))) is equal to

    sum_(r=1)^(oo)tan^(-1)((2)/(1+(2r+1)(2r-1)))

    The value of the lim_(n rarr oo)tan{sum_(r=1)^(n)tan^(-1)((1)/(2r^(2)))}_( is equal to )

    sum _(r = 2) ^(oo) (1)/(r ^(2) - 1) is equal to :

    The value of Sigma_(r=1)^(infty) tan^(-1) ( 1/(r^(2) + 5r + 7)) is equal to