Home
Class 11
PHYSICS
The two vectors A=2hat(i)+hat(j)+3hat(k)...

The two vectors `A=2hat(i)+hat(j)+3hat(k)` and `B=7hat(i)-5hat(j)-3hat(k)` are :-
the sum and the differnce of two vectors `vec(A)` and `vec(B)` are ________ and ________ respectively.

Text Solution

Verified by Experts

The correct Answer is:
`9hat(i)-4hat(j)+0hat(k),-5hat(i)+6hat(j)+6hat(k)`

`vec(A)+vec(B)=9hat(i)-4hat(j)+ohat(k)`
`vec(A)-vec(B)=-5hat(i)+6hat(j)+6hat(k)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • UNIT DIMENSION, VECTOR & BASIC MATHS

    BANSAL|Exercise Exercise|10 Videos
  • UNIT DIMENSION, VECTOR & BASIC MATHS

    BANSAL|Exercise EXERCISE - 2 [MATRIX TYPE]|1 Videos
  • KINETIC THEORY OF GASES

    BANSAL|Exercise Section-B|13 Videos

Similar Questions

Explore conceptually related problems

Vectors vec A=hat i+hat j-2hat k and vec B=3hat i+3hat j-6hat k are

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

Knowledge Check

  • Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

    A
    Parallel
    B
    Antiparallel
    C
    Perpendicular
    D
    at acute angle with each other
  • If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

    A
    Perpendicular to `vec(A)` is `(-hat(j)+hat(k))1/sqrt(2)`
    B
    Parallel to `vec(A)` is `(2hat(i)+hat(j)+hat(k))/sqrt(6)`
    C
    Perpendicular to `vec(B)` is `((-hat(j)+hat(k))/sqrt(2))`
    D
    Parallel to `vec(A)` is `(hat(i)+hat(j)+hat(k))/sqrt(3)`
  • The angle between two vectors vec(A)= 3hat(i)+4hat(j)+5hat(k) and vec(B)= 3hat(i)+4hat(j)+5hat(k) is

    A
    `60^(@)`
    B
    Zero
    C
    `90^(@)`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

    Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .

    Determine a vector product of vec(A)=hat(i)+hat(j)+hat(k)and vec(B)=-3hat(i)+hat(j)+hat(k)

    The angle between the two Vectors vec(A)= 3hat(i)+4hat(j)+5hat(k) and vec(B)= 3hat(i)+4hat(j)-5hat(k) will be

    Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4hat(i) - 2hat(j) + 6hat(k) . The angle made by (A+B) with x-axis is :