Home
Class 12
MATHS
If y=sec x^(@), then (dy)/(dx)=...

If `y=sec x^(@)`, then `(dy)/(dx)=`

A

sec x tan x

B

`sec x^(@) tan x^(@)`

C

`pi/180 sec x^(@) tan x^(@)`

D

`180/pi sec x^(@) tan x^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = \sec x^\circ \) with respect to \( x \), we will follow these steps: ### Step 1: Understand the function We have \( y = \sec x^\circ \). The secant function is defined as: \[ \sec x = \frac{1}{\cos x} \] ### Step 2: Differentiate using the chain rule To differentiate \( y \) with respect to \( x \), we will use the chain rule. The derivative of \( \sec u \) with respect to \( u \) is \( \sec u \tan u \). Here, \( u = x^\circ \). ### Step 3: Convert degrees to radians Since the derivative is usually calculated in radians, we need to convert degrees to radians. The conversion from degrees to radians is given by: \[ x^\circ = x \cdot \frac{\pi}{180} \] ### Step 4: Apply the chain rule Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] where \( u = x^\circ \). ### Step 5: Differentiate \( y \) with respect to \( u \) Now, we differentiate \( y \) with respect to \( u \): \[ \frac{dy}{du} = \sec u \tan u \] ### Step 6: Differentiate \( u \) with respect to \( x \) Next, we differentiate \( u \) with respect to \( x \): \[ \frac{du}{dx} = \frac{d}{dx}\left(x \cdot \frac{\pi}{180}\right) = \frac{\pi}{180} \] ### Step 7: Combine the results Now, we can combine the results: \[ \frac{dy}{dx} = \sec(x^\circ) \tan(x^\circ) \cdot \frac{\pi}{180} \] ### Final Result Thus, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{\pi}{180} \sec(x^\circ) \tan(x^\circ) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF INVERSE FUNCTIONS|27 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|17 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If y=sec(tan^(-1)x), then (dy)/(dx) at x=1 is equal to: (1)/(sqrt(2))(b)(1)/(2)(c)1(d)sqrt(2)

If y=sec(tan^(-1)x), then (dy)/(dx)atx=1 is (a) (cos pi)/(4)(b)(sin pi)/(2)(c)(sin pi)/(6)(d)(cos pi)/(3)

Knowledge Check

  • If y=sec(tan^(-1)x) , then (dy)/(dx) at x=1 is equal to

    A
    `(1)/(sqrt2)`
    B
    `(1)/(2)`
    C
    1
    D
    `sqrt2`
  • If y= sec tan^(-1) "" ,then (dy)/(dx) =

    A
    `x//(1+x^2)`
    B
    `x sqrt""(1+ x^2)`
    C
    `1// sqrt((1+x^2)`
    D
    `x//sqrt(1+x^2)`
  • If y= sec x , find (dy)/(dx) .

    A
    `(1)/( 1+ sin x)`
    B
    `(-1)/( 1 + sin x)`
    C
    `(1)/( 1 - sin x)`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If y=sec(tan^(-1)x) , then (dy)/(dx)|_(x=1) is equal to

    If y=sec(tan^(-1)x) ,then (dy)/(dx) at x=1 is equal to (1)(1)/(2)(2)1(3)sqrt(2)(4)(1)/(sqrt(2))

    If y=log(sec x+tan x), then (dy)/(dx)=

    If y= sec (tan^(-1)x)," then "(dy)/(dx)" at " x = 1 is equal to

    If y=(xtan x ) ^(sec x),then (dy)/(dx) =