Home
Class 12
MATHS
d/(dx)log|x|e=...

`d/(dx)log_|x|e=`

A

`e^x`

B

`1/(logx)^2`

C

`(-1)/(x(log|x|)^2)`

D

`1/|x|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differentiation problem \( \frac{d}{dx} \log_{|x|} e \), we can follow these steps: ### Step-by-Step Solution: 1. **Rewrite the logarithm**: We start by rewriting the logarithm using the change of base formula: \[ \log_{|x|} e = \frac{\log_e e}{\log_e |x|} = \frac{1}{\log_e |x|} \] Here, \( \log_e e = 1 \). 2. **Differentiate the expression**: Now, we differentiate \( y = \frac{1}{\log_e |x|} \) using the quotient rule or the chain rule. We can rewrite it as: \[ y = (\log_e |x|)^{-1} \] Using the chain rule, we have: \[ \frac{dy}{dx} = -1 \cdot (\log_e |x|)^{-2} \cdot \frac{d}{dx}(\log_e |x|) \] 3. **Differentiate \( \log_e |x| \)**: The derivative of \( \log_e |x| \) is: \[ \frac{d}{dx}(\log_e |x|) = \frac{1}{|x|} \cdot \frac{d}{dx}(|x|) = \frac{1}{|x|} \cdot \text{sgn}(x) \] where \( \text{sgn}(x) \) is the sign function, which is \( 1 \) for \( x > 0 \) and \( -1 \) for \( x < 0 \). 4. **Combine the results**: Substituting back into our derivative, we get: \[ \frac{dy}{dx} = -\frac{1}{(\log_e |x|)^2} \cdot \frac{1}{|x|} \cdot \text{sgn}(x) \] This simplifies to: \[ \frac{dy}{dx} = -\frac{\text{sgn}(x)}{|x| (\log_e |x|)^2} \] 5. **Final result**: Thus, the derivative of \( \log_{|x|} e \) with respect to \( x \) is: \[ \frac{d}{dx} \log_{|x|} e = -\frac{\text{sgn}(x)}{|x| (\log_e |x|)^2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

The differentiation of log_(a)x(a>0,a)*!=1 with respect to x is (1)/(x log_(a)a) i.e.(d)/(dx)(log_(a)x)=(1)/(x log_(a)a)

if (d)/(dx)(log_(e)x)=(1)/(x) then (d)/(dx)(log_(10)x)

Knowledge Check

  • (d)/(dx)[log_(e)e^(sin(x^(2)))] is equal to

    A
    `2cos(x^(2))`
    B
    `2cosx`
    C
    `2x.cosx`
    D
    `2x cos(x^(2))`
  • If (d)/(dx)[log_(10)(log_(10)x)]=(log_(10)e)/(f(x))," then "f(x)=

    A
    `log_(10)x`
    B
    `log_(x)10`
    C
    `xlog_(10)x`
    D
    `xlogx`
  • Similar Questions

    Explore conceptually related problems

    (d)/(dx)[log_(a)x]

    (d)/(dx)(e^(log_(e)x^(3)))

    (d)/(dx){log_(e)(ax)^(x)}

    The differentiation of log _(e)x,x>0is(1)/(x)* i.e.(d)/(dx)(log_(e)x)=(1)/(x)

    (d)/(dx)[log_(e)(sin x)*tan x] at x=(pi)/(4) is

    The value of (d)/(dx)(log_(2)log_(3)x) at x=3 is (ln x=log_(e)x)