Home
Class 12
MATHS
If y sec x+ tan x +x^2 y=0, then (dy)/(d...

If `y sec x+ tan x +x^2 y=0`, then `(dy)/(dx)` =

A

`(2xy+sec^2x+ysecxtanx)/(x^2+secx)`

B

`-(2xy+sec^2x+secxtanx)/(x^2+secx)`

C

`-(2xy+sec^2x+ysecxtanx)/(x^2+secx)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) from the equation \(y \sec x + \tan x + x^2 y = 0\), we will use implicit differentiation. Here’s a step-by-step solution: ### Step 1: Differentiate both sides of the equation We start with the equation: \[ y \sec x + \tan x + x^2 y = 0 \] Differentiating both sides with respect to \(x\): \[ \frac{d}{dx}(y \sec x) + \frac{d}{dx}(\tan x) + \frac{d}{dx}(x^2 y) = 0 \] ### Step 2: Apply the product rule For the term \(y \sec x\), we apply the product rule: \[ \frac{d}{dx}(y \sec x) = y \frac{d}{dx}(\sec x) + \sec x \frac{dy}{dx} \] Using the derivative of \(\sec x\), which is \(\sec x \tan x\), we have: \[ y \sec x \tan x + \sec x \frac{dy}{dx} \] For \(\tan x\), the derivative is: \[ \frac{d}{dx}(\tan x) = \sec^2 x \] For \(x^2 y\), we again apply the product rule: \[ \frac{d}{dx}(x^2 y) = x^2 \frac{dy}{dx} + 2xy \] ### Step 3: Combine the derivatives Now, substituting back into our differentiated equation, we get: \[ y \sec x \tan x + \sec x \frac{dy}{dx} + \sec^2 x + x^2 \frac{dy}{dx} + 2xy = 0 \] ### Step 4: Collect all \(\frac{dy}{dx}\) terms Rearranging the equation to isolate \(\frac{dy}{dx}\): \[ \sec x \frac{dy}{dx} + x^2 \frac{dy}{dx} = - (y \sec x \tan x + \sec^2 x + 2xy) \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx} (\sec x + x^2) = - (y \sec x \tan x + \sec^2 x + 2xy) \] ### Step 5: Solve for \(\frac{dy}{dx}\) Finally, we solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = - \frac{y \sec x \tan x + \sec^2 x + 2xy}{\sec x + x^2} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = - \frac{y \sec x \tan x + \sec^2 x + 2xy}{\sec x + x^2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If x=y tan((x)/(2)), then (dy)/(dx)=

If y=log(sec x+tan x), then (dy)/(dx)=

Knowledge Check

  • If y=sec x -tan x ,then (d^(2)y)/(dx^(2)) =

    A
    ` (1)/(4) sec ^(2) ((pi)/(4)- ( x)/(2) ) tan ((pi)/(4)-( x)/(2))`
    B
    ` (-1)/(4) sec ^(2) ((pi)/(4)- ( x)/(2) ) tan ((pi)/(4)-( x)/(2))`
    C
    ` (1)/(2) sec ^(2) ((pi)/(4)- ( x)/(2) ) tan ((pi)/(4)-( x)/(2))`
    D
    ` (-1)/(2) sec ^(2) ((pi)/(4)- ( x)/(2) ) tan ((pi)/(4)-( x)/(2))`
  • If y=(xtan x ) ^(sec x),then (dy)/(dx) =

    A
    ` ysec x((1)/(x)-2cosec 2x -(tan x )log (xtan x ))`
    B
    ` ysec x((1)/(x)+2cosec 2x + (tan x )log (xtan x ))`
    C
    ` ysec x((1)/(x)-2cosec 2x + (tan x )log (xtan x ))`
    D
    ` ysec x((1)/(x)+2cosec 2x - (tan x )log (xtan x ))`
  • If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

    A
    2
    B
    -2
    C
    `(1)/(2)`
    D
    `-(1)/(2)`
  • Similar Questions

    Explore conceptually related problems

    If y= sec ( tan sqrt x ) ,then (dy)/(dx) =

    If y= sec (tan^(-1) "" x ) then (dy)/(dx) at x=1 is equal to

    If y=sec x^(@) , then (dy)/(dx)=

    If y=(2x)^(sec x) +(tan x)^(x) ,then(dy)/(dx)=

    If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?