Home
Class 12
MATHS
Evaluate : int0^(pi/6)cosxcos2xdx...

Evaluate : `int_0^(pi/6)cosxcos2xdx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_0^{\frac{\pi}{6}} \cos x \cos 2x \, dx \), we can use the product-to-sum identities for cosine functions. The relevant identity is: \[ \cos A \cos B = \frac{1}{2} \left( \cos(A + B) + \cos(A - B) \right) \] ### Step 1: Apply the Product-to-Sum Identity Using the identity, we rewrite the integral: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/6)cos x cos2xdx

Evaluate: int_0^(pi/2)cos^3xdx

int_(0)^((pi)/(6))cos x*cos2xdx=

Evaluate int_(0)^(pi) cotx.cos2xdx

int_0^(pi/2) sinxcos^3xdx

Evaluate : int_(0)^(pi//2)cos^(9)xdx

int_0^(pi/2) sin^2xcos^2xdx

Evaluate: int_0^(pi/2)sin^4xdx

Evaluate : int_(0)^(pi) cos^(2)x.dx

int_0^(pi/2) cos^5xdx