Home
Class 12
MATHS
If y=sqrt(x+sqrt(x+sqrt(x+...tooo))), pr...

If `y=sqrt(x+sqrt(x+sqrt(x+...tooo))),` prove that `(dy)/(dx)=1/(2y-1)`

Text Solution

AI Generated Solution

To solve the problem, we start with the given equation: \[ y = \sqrt{x + \sqrt{x + \sqrt{x + \ldots}}} \] ### Step 1: Rewrite the equation Since the expression inside the square root is the same as \( y \), we can rewrite the equation as: \[ y = \sqrt{x + y} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|102 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA|Exercise Solved Examples And Exercises|67 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt(x+sqrt(x+sqrt(x+longrightarrow oo))), prove that (dy)/(dx)=(1)/(2y-1)

If y=sqrt(log x+sqrt(cos x+sqrt(cos x+...to oo))) prove that (dy)/(dx)=(sin x)/(1-2y)

If y=sqrt(x+sqrt(x+sqrt(+…..oo))) then prove that (2y-1)dy/dx=1.

If y=sqrt(cos x+sqrt(cos x+sqrt(cos x+...oo))) prove that (dy)/(dx)=(sin x)/(1-2y)

If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo))) then ) prove that (dy)/(dx)=(y^(2)-x)/(2y^(3)-2xy-1)

y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo))), then prove that (dy)/(dx)=(y^(2)-x)/(2y^(3)-2xy-1))

If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+ tooo))),p rov et h a t(dy)/(dx)=(cosx)/(2y-1)

If y=sqrt(x+y) , prove that (dy)/(dx)=(1)/((2y-1)).

If y=sqrt(cos x+sqrt(cos x+sqrt(cos x+......oo))) then prove that (dy)/(dx)=(sin x)/(1-2y)

If y= sqrt(x+y) then prove that (dy)/(dx)=1/(2y-1)