Home
Class 11
PHYSICS
The torque of a force F = - 6 hat (i) ac...

The torque of a force `F = - 6 hat (i)` acting at a point `r = 4 hat(j)` about origin will be

A

`-24 hat(k)`

B

`24 hat(k)`

C

`24 hat(j)`

D

`24 hat(i)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the torque \( \tau \) of a force \( \mathbf{F} \) acting at a point \( \mathbf{r} \) about the origin, we can use the formula: \[ \tau = \mathbf{r} \times \mathbf{F} \] Where: - \( \mathbf{r} \) is the position vector, - \( \mathbf{F} \) is the force vector, - \( \times \) denotes the cross product. ### Step 1: Identify the vectors Given: - \( \mathbf{F} = -6 \hat{i} \) - \( \mathbf{r} = 4 \hat{j} \) ### Step 2: Write the vectors in component form The vectors can be expressed as: - \( \mathbf{F} = 0 \hat{i} + 0 \hat{j} - 6 \hat{k} \) - \( \mathbf{r} = 0 \hat{i} + 4 \hat{j} + 0 \hat{k} \) ### Step 3: Calculate the cross product To find the torque, we calculate \( \mathbf{r} \times \mathbf{F} \): \[ \tau = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 4 & 0 \\ -6 & 0 & 0 \end{vmatrix} \] ### Step 4: Evaluate the determinant Using the determinant, we can calculate: \[ \tau = \hat{i} \begin{vmatrix} 4 & 0 \\ 0 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 0 & 0 \\ -6 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 0 & 4 \\ -6 & 0 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 4 & 0 \\ 0 & 0 \end{vmatrix} = (4)(0) - (0)(0) = 0 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 0 & 0 \\ -6 & 0 \end{vmatrix} = (0)(0) - (0)(-6) = 0 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 0 & 4 \\ -6 & 0 \end{vmatrix} = (0)(0) - (4)(-6) = 24 \] ### Step 5: Combine the results Putting it all together, we have: \[ \tau = 0 \hat{i} - 0 \hat{j} + 24 \hat{k} = 24 \hat{k} \] ### Final Answer Thus, the torque \( \tau \) about the origin is: \[ \tau = 24 \hat{k} \] ---

To find the torque \( \tau \) of a force \( \mathbf{F} \) acting at a point \( \mathbf{r} \) about the origin, we can use the formula: \[ \tau = \mathbf{r} \times \mathbf{F} \] Where: - \( \mathbf{r} \) is the position vector, ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ROTATION

    DC PANDEY|Exercise Check point 9.3|15 Videos
  • ROTATION

    DC PANDEY|Exercise (A) Chapter Exercises|83 Videos
  • ROTATION

    DC PANDEY|Exercise Check point 9.1|20 Videos
  • RAY OPTICS

    DC PANDEY|Exercise Integer type q.|15 Videos
  • ROTATIONAL MECHANICS

    DC PANDEY|Exercise Subjective Questions|2 Videos

Similar Questions

Explore conceptually related problems

The torque of force barF= (2 hat i -3 hat j + 4 hat k) newton acting at the point = (3 hat i + 2 hat j+ 3 hat k) metre about origin is tau (in N-m). Find x. component of tau .

Find the torque of the force vec(F)=(2hat(i)-3hat(j)+4hat(k)) N acting at the point vec(r )=(3hat(i)=2hat(j)+3hat(k)) m about the origion.

Knowledge Check

  • The torque of a force F = -2 hat(i) +2 hat(j) +3 hat(k) acting on a point r = hat(i) - 2 hat(k)+hat(k) about origin will be

    A
    `8 hat(i)+5 hat(j)+2 hat(k)`
    B
    `-8 hat(i)-5hat(j)-2 hat(k)`
    C
    `8 hat(i)-5 hat(j)+2 hat(k)`
    D
    `-8 hat(i)+5 hat(j)-2 hat(k)`
  • The torque of a force F = 2 hat(i) - 3 hat(j) +5 hat(k) acting at a point whose position vector r = 3 hat(i) - 3 hat(j) +5 hat(k) about the origin is

    A
    `-3 hat(i)+5hat(k)`
    B
    `-5hat(i)+3hat(k)`
    C
    `-5hat(j)-3hat(k)`
    D
    `3 hat(i)-5hat(j)+3hat(k)`
  • The torque of force F = -3 hat(i)+hat(j) + 5 hat(k) acting on a point r = 7 hat(i) + 3 hat(j) + hat(k) about origin will be

    A
    `14 hat(i)-38 hat(j) + 16 hat(k)`
    B
    `4 hat(i)+4hat(j)+6 hat(k)`
    C
    `-14 hat(i)+38 hat(j)-16 hat(k)`
    D
    `-21 hat(i)+3 hat(j)+5 hat(k)`
  • Similar Questions

    Explore conceptually related problems

    The torque of a force vec(F)=-2hat(i)+2hat(j)+3hat(k) acting on a point vec(r )=hat(i)-2hat(j)+hat(k) about origin will be

    Find the torque of a force F=-3hat(i)+2hat(j)+hat(k) acting at the point r=8hat(i)+2hat(j)+3hat(k),(iftau=rxxF)

    The torque of force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(r)=7hat(i)+3hat(j)+hat(k) is ______________?

    Find the torque of a force F=(hat(i)+2 hat(j)-3hat(k))N about a point O. The position vector of point of application of force about O is r=(2hat(i)+3hat(j)-hat(k))m .

    What is the torque of a force overset(rarr)F=(2 hat i -3 hat j +4 hat k) Newton acting at a point overset(rarr)r=(3 hat I +2 hat j + 3 hat k) metre about the origin ?