Home
Class 12
MATHS
Evaluate the integralsint0^(pi/2)(sinx)/...

Evaluate the integrals`int_0^(pi/2)(sinx)/(1+cos^2x)dx`

A

`pi/4`

B

0

C

`pi/2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^2 x} \, dx, \] we will use the substitution method. ### Step 1: Substitution Let \( u = \cos x \). Then, the differential \( du = -\sin x \, dx \). ### Step 2: Change of Limits When \( x = 0 \), \( u = \cos(0) = 1 \). When \( x = \frac{\pi}{2} \), \( u = \cos\left(\frac{\pi}{2}\right) = 0 \). Thus, the limits change from \( x: 0 \to \frac{\pi}{2} \) to \( u: 1 \to 0 \). ### Step 3: Rewrite the Integral Substituting into the integral, we have: \[ I = \int_1^0 \frac{-1}{1 + u^2} \, du = -\int_1^0 \frac{1}{1 + u^2} \, du. \] ### Step 4: Change the Limits Reversing the limits of integration gives: \[ I = \int_0^1 \frac{1}{1 + u^2} \, du. \] ### Step 5: Evaluate the Integral The integral \( \int \frac{1}{1 + u^2} \, du \) is known to be \( \tan^{-1}(u) \). Therefore, \[ I = \left[ \tan^{-1}(u) \right]_0^1. \] Calculating this, we get: \[ I = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4}. \] ### Final Answer Thus, the value of the integral is \[ \boxed{\frac{\pi}{4}}. \] ---

To evaluate the integral \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^2 x} \, dx, \] we will use the substitution method. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.7|14 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.6|24 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

int_(0)^(pi//2)(sinx)/((1+cos^(2)x))dx

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(2))(sin x-cos x)/(1+sin x cos x)dx

Evaluate the following integral: int_0^(pi//2)(xsinxcosx)/(sin^4x+cos^4x)dx

Evaluate: int_0^pi(xsinx)/(1+cos^2x)dx

Evaluate the following definite integrals: int_(0)^(pi//2)(1-sinx)/(x+cos x)dx

Evaluate the following integral: int_0^(pi//2)(cos^2x)/(1+3sin^2x)dx

Evaluate the following integral: int_0^(pi//2)(sin^2x)/((1+cos x)^2)dx

Evaluate the following integral: int_0^(pi//2)(x+sinx)/(1+cosx)dx

Evaluate the following integral: int_0^(pi//2)(s in x cos x)/(cos^2x+3cos x+2)dx