Home
Class 12
MATHS
Prove that a^3 + b^3 + c^3 – 3abc = (a ...

Prove that `a^3 + b^3 + c^3 – 3abc = (a + b + c) (a + bomega + comega^2) (a + bomega^2 + "c"omega)`, where `omega` is an imaginary cube root of unity.

Text Solution

AI Generated Solution

The correct Answer is:
To prove the identity \( a^3 + b^3 + c^3 - 3abc = (a + b + c)(a + b\omega + c\omega^2)(a + b\omega^2 + c\omega) \), where \( \omega \) is a cube root of unity, we will start by expanding the right-hand side (RHS) and show that it simplifies to the left-hand side (LHS). ### Step 1: Understand the properties of \( \omega \) Recall that \( \omega \) is a cube root of unity, which means: 1. \( \omega^3 = 1 \) 2. \( 1 + \omega + \omega^2 = 0 \) ### Step 2: Write down the RHS The RHS is: \[ (a + b + c)(a + b\omega + c\omega^2)(a + b\omega^2 + c\omega) \] ### Step 3: Expand the first two factors First, we will expand \( (a + b\omega + c\omega^2)(a + b\omega^2 + c\omega) \). Using the distributive property: \[ = a(a + b\omega^2 + c\omega) + b\omega(a + b\omega^2 + c\omega) + c\omega^2(a + b\omega^2 + c\omega) \] Expanding each term: \[ = a^2 + ab\omega^2 + ac\omega + ab\omega + b^2\omega^3 + bc\omega^2 + ac\omega^2 + bc\omega + c^2\omega^3 \] Now, substituting \( \omega^3 = 1 \): \[ = a^2 + ab\omega^2 + ac\omega + ab\omega + b^2 + bc\omega^2 + ac\omega^2 + bc\omega + c^2 \] ### Step 4: Combine like terms Now, we combine the terms: \[ = a^2 + b^2 + c^2 + (ab + ac)(\omega + \omega^2) + (bc + ab)(\omega + \omega^2) \] Using \( \omega + \omega^2 = -1 \): \[ = a^2 + b^2 + c^2 - (ab + ac + bc) \] ### Step 5: Multiply by \( (a + b + c) \) Now, we multiply this result by \( (a + b + c) \): \[ = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] ### Step 6: Expand the product Expanding this product: \[ = a(a^2 + b^2 + c^2 - ab - ac - bc) + b(a^2 + b^2 + c^2 - ab - ac - bc) + c(a^2 + b^2 + c^2 - ab - ac - bc) \] This will yield: \[ = a^3 + b^3 + c^3 - 3abc \] ### Conclusion Thus, we have shown that: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a + b\omega + c\omega^2)(a + b\omega^2 + c\omega) \] This completes the proof.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 1 (OBJECTIVE PROBLEMS I JEE MAIN) - SECTIONS - A & B|4 Videos
  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 1 (OBJECTIVE PROBLEMS I JEE MAIN) - SECTIONS - C|1 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos

Similar Questions

Explore conceptually related problems

If x=a+b, y=aomega+bomega^2 and z=aomega^2+bomega where omega is an imaginary cube root of unity, prove that x^2+y^2+z^2=6ab .

18.Prove that det[[b,a,cb,a,cc,b,a]]=(a+b+c)(a+b omega+c omega^(2))(a+b omega^(2)+c omega): where ,omega is a nonreal cube root of unity.

The area of a quadrilateral whose vertices are 1,i,omega,omega^(2), where (omega!=1) is a imaginary cube root of unity, is

The value of (a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^2)/(c+aomega+bomega^2) (where 'omega' is the imaginary cube root of unity), is a.-omega b. omega^2 c. 1 d. -1

The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,omega^(4)),(omega^(5),omega^(4),1)| , where omega is an imaginary cube root of unity, is

MOTION-COMPLEX NUMBER -EXERCISE - 4 (LEVEL -II) PREVIOUS YEAR - JEE ADVANCED
  1. Prove that a^3 + b^3 + c^3 – 3abc = (a + b + c) (a + bomega + comega^...

    Text Solution

    |

  2. If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition tha...

    Text Solution

    |

  3. A man walks a distance of 3 units from the origin towards the North...

    Text Solution

    |

  4. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  5. A particle P starts from the point z(0)=1+2i, where i=sqrt(-1). It mov...

    Text Solution

    |

  6. Let A ,B ,C be three sets of complex number as defined below A={z : I ...

    Text Solution

    |

  7. Let A,B,C be three sets of complex number as defined below A={z:lm ...

    Text Solution

    |

  8. Let A,B,C be three sets of complex number as defined below A={z:lm ...

    Text Solution

    |

  9. Let z=x+i y be a complex number where xa n dy are integers. Then, the ...

    Text Solution

    |

  10. Let z=costheta+isintheta. Then the value of sum(m->1-15)Img(z^(2m-1)) ...

    Text Solution

    |

  11. Q. Let p and q real number such that p!= 0,p^2!=q and p^2!=-q. if alph...

    Text Solution

    |

  12. Let omega be a complex cube root unity with omega!=1. A fair die is th...

    Text Solution

    |

  13. Let z(1) and z(2) be two distinct complex numbers and z=(1-t)z(1)+iz(2...

    Text Solution

    |

  14. Let omega be the complex number " cos " ( 2pi)/(3) + isin (2pi)/(3)...

    Text Solution

    |

  15. Match the statement in Column I with those in Column II. [Note : He...

    Text Solution

    |

  16. Let a, b and c be three real numbers satisfying [a" "b" "c][[1,9,7],[...

    Text Solution

    |

  17. Let omega be the solution of x^(3)-1=0 with "Im"(omega) gt 0. If a=2 w...

    Text Solution

    |

  18. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  19. If z is any complex number satisfying abs(z-3-2i) le 2, where i=sqrt(-...

    Text Solution

    |

  20. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  21. Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numb...

    Text Solution

    |