Home
Class 12
MATHS
if i=sqrt-1, the number of values of i^n...

if `i=sqrt-1`, the number of values of `i^n+i^-n` for different `n epsilon I`, is:

A

`(2^n)/((1-i)^(2n))+((1+i)^(2n))/(2^n)`

B

`((1+i)^(2n))/(2^n)+((1-i)^(2n))/2^n`

C

`((1+i)^(2n))/(2^n)+(2^n)/(1-i)^(2n)`

D

`(2^n)/((1+i)^(2n))+2^n/((1-i)^(2n))`

Text Solution

Verified by Experts

The correct Answer is:
B,D
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 3 (LEVEL -III) SUBJECTIVE - JEE ADVANCED|65 Videos
  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 4 (LEVEL -I) PREVIOUS YEAR - JEE MAIN|12 Videos
  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 2 (LEVEL -I) OBJECTIVE PROBLEMS - JEE MAIN|21 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos

Similar Questions

Explore conceptually related problems

if i=sqrt(-)1, the number of values of i^(n)+i^(-n) for different n varepsilon I, is:

If i=sqrt(-1), the number of values of i^(-n) for a different n inI is

If i = sqrt(-1) , then how many values does i^(-2n) have for different n in Z ?

If i^(2)=-1 then the value of sum_(n=1)^(200)i^(n) is

If i=sqrt(-1) , then {i^(n)+i^(-n), n in Z} is equal to

The value of 1/(i^n) + 1/(i^(n + 3)) + 1/(i^(n + 2)) + 1/(i^(n + 1)) is :

Find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3) for all n in N.

If n in N, then find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3)

What is the modulus of the complex number i^(2n+1) (-i)^(2n-1) , where n in N and i=sqrt(-1) ?