Home
Class 12
MATHS
If w=alpha+ibeta, where beta!=0 and z!=1...

If `w=alpha+ibeta,` where `beta!=0` and `z!=1` , satisfies the condition that `((w- w z)/(1-z))` is a purely real, then the set of values of `z` is `|z|=1,z!=2` (b) `|z|=1a n dz!=1` `z= z ` (d) None of these

A

`{z::|z|=1}`

B

`{z::z=barz}`

C

`{z::zzin1}`

D

`{z::|z|=1,z in1}`

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 4 (LEVEL -I) PREVIOUS YEAR - JEE MAIN|12 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos

Similar Questions

Explore conceptually related problems

If w=alpha+i beta, where beta!=0 and z!=1 satisfies the condition that ((w-wz)/(1-z)) is a purely real,then the set of values of z is |z|=1,z!=2( b) |z|=1 and z!=1z=z(d) None of these

If z=x+iy and w=(1-iz)/(z-i), show that |w|=1o+_(z) is purely real.

Knowledge Check

  • If w = alpha+ibeta , where beta ne 0 and z ne 1 , satisfies the condition that ((w - bar(w) z)/(1-z)) is purely real, then the set of values of z is

    A
    `{z : |z| =1}`
    B
    `{ z:z=bar(z) }`
    C
    `{ z : z ne 1}`
    D
    `{ z : |z| = 1, z ne1}`
  • If w=alpha+ibeta where beta ne 0 and z ne 1 satisfies the condition that ((w- bar wz)/(1-z)) is purely real then the set of values of z is

    A
    `|z|=1,z ne 2`
    B
    `|z|=1 and z ne 1`
    C
    `z= barz `
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    z_(1),z_(2) satisfy |z8|=3 and (z_(1))/(z_(2)) is purely real and positive then |z_(1)z_(2)|=

    If omega = z//[z-(1//3)i] and |omega| = 1 , then find the locus of z.

    If omega = (z)/( z - (1)/(3)i) and | omega| = 1 then z lies on

    If w=(z)/(z-(1)/(3)i) and |w|=1, then z lies on

    If |z|=1 and let omega=((1-z)^(2))/(1-z^(2)), then prove that the locus of omega is equivalent to |z-2|=|z+2|

    If z=x+iy and w=(1-iz)/(z-i), then show that |w|1hat boldsymbol varphi_(z) is purely real.