Home
Class 12
MATHS
Evaluate lim ( n to oo) sum( r =1) ^(n...

Evaluate
`lim _( n to oo) sum_( r =1) ^(n -1) (1)/(sqrt(n ^(2) -r ^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{n \to \infty} \sum_{r=1}^{n-1} \frac{1}{\sqrt{n^2 - r^2}}, \] we can follow these steps: ### Step 1: Rewrite the Sum First, we can factor out \(n\) from the square root in the denominator: \[ \sqrt{n^2 - r^2} = n \sqrt{1 - \left(\frac{r}{n}\right)^2}. \] Thus, we can rewrite the sum as: \[ \sum_{r=1}^{n-1} \frac{1}{\sqrt{n^2 - r^2}} = \sum_{r=1}^{n-1} \frac{1}{n \sqrt{1 - \left(\frac{r}{n}\right)^2}}. \] ### Step 2: Change the Variable Next, we change the variable by letting \(x = \frac{r}{n}\). Then, \(r = nx\) and as \(r\) goes from \(1\) to \(n-1\), \(x\) goes from \(\frac{1}{n}\) to \(\frac{n-1}{n}\). The increment \(dr\) becomes \(n \, dx\). Thus, we can express the sum as: \[ \sum_{r=1}^{n-1} \frac{1}{n \sqrt{1 - x^2}} \cdot n \, dx = \sum_{r=1}^{n-1} \frac{1}{\sqrt{1 - x^2}} \, dx. \] ### Step 3: Convert the Sum to an Integral As \(n\) approaches infinity, the sum can be approximated by an integral: \[ \lim_{n \to \infty} \sum_{r=1}^{n-1} \frac{1}{\sqrt{1 - x^2}} \cdot \frac{1}{n} \approx \int_0^1 \frac{1}{\sqrt{1 - x^2}} \, dx. \] ### Step 4: Evaluate the Integral The integral \[ \int_0^1 \frac{1}{\sqrt{1 - x^2}} \, dx \] is a standard integral that evaluates to: \[ \left[ \sin^{-1}(x) \right]_0^1 = \sin^{-1}(1) - \sin^{-1}(0) = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] ### Step 5: Conclusion Thus, we find that: \[ \lim_{n \to \infty} \sum_{r=1}^{n-1} \frac{1}{\sqrt{n^2 - r^2}} = \frac{\pi}{2}. \] ### Final Answer \[ \frac{\pi}{2}. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-I|15 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -2 (LEVEL-II)|11 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

li sum_ (n-> oo) sum_ (r = 1) ^ (n) (1) / (sqrt (4n ^ (2) -r ^ (2)))

Knowledge Check

  • lim_(n to oo)(1)/(2)" " sum_(r=+1)^(2n) (r)/(sqrt(n^(2)+r^(2))) equals

    A
    `1+sqrt(5)`
    B
    `-1+sqrt(5)`
    C
    `-1+sqrt(2)`
    D
    `1sqrt(2)`
  • lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

    A
    e+1
    B
    e-1
    C
    1-e
    D
    e
  • The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

    A
    `1+sqrt5`
    B
    `-1+sqrt5`
    C
    `-1+sqrt2`
    D
    `1+sqrt2`
  • Similar Questions

    Explore conceptually related problems

    Evaluate : (i) Lim_(nrarroo) sum_(r=0)^(nrarr1) (1)/(sqrt(n^(2)-r^(2))) , (ii) Lim_(nrarroo) 3/n[1+sqrt((n)/(n+3))+sqrt((n)/(n+6))+sqrt((n)/(n+9))+"....."+sqrt((n)/(n+3(n-1)))] (iii) lim_(nrarroo) (sum_(r=1)^(2n) (3nr^(2)+2n^(2)r))

    The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is

    lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) equals

    value of lim_ (n rarr oo) sum_ (r = 1) ^ (n) tan ^ (- 1) ((1) / (2r ^ (2))) is

    Evaluate: lim_(n rarr oo) (sum_(r=0)^( n) (1)/(2^(r))) .