Home
Class 12
MATHS
The value of the integral int3^6 sqrtx/(...

The value of the integral `int_3^6 sqrtx/(sqrt(9-x)+sqrtx)dx` is

A

`3/2`

B

2

C

1

D

`1/2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -3|55 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(3)^(6)(sqrt(x))/(sqrt(9-x)+sqrt(x))dx is

int1/(sqrtx(1-sqrtx)dx=

int_0^1 (dx)/(sqrt(1+x)-sqrtx)

The value of the integral intx^((1)/(3))(1-sqrtx)^(3)dx is equal to (where c is the constant of integration)

The value of int_(2)^(3) (sqrtx)/(sqrt(5-x)+sqrtx)dx is equal

The value of the integral int(x^(2)-4xsqrtx+6x-4sqrtx+1)/(x-2sqrtx+1)

(8) int(1/(sqrtx)-sqrtx)dx