Home
Class 12
MATHS
Consider three points P = (-sin (beta-al...

Consider three points `P = (-sin (beta-alpha), -cos beta)`, `Q = (cos(beta-alpha), sin beta)`, and `R = ((cos (beta - alpha + theta), sin (beta - theta))`, where `0< alpha, beta, theta < pi/4` Then

A

P lies on the line segment RQ

B

Q lies on the line segment PR

C

R lies on the line segment QP

D

P, Q, R are non collinear

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-I)|13 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|15 Videos

Similar Questions

Explore conceptually related problems

(cos alpha + cos beta) ^ (2) + (sin alpha-sin beta) ^ (2) = 4 (cos ^ (2) (alpha + beta)) / (2)

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

Knowledge Check

  • Consider three points P=(-sin (beta-alpha),-cos beta),Q=(cos (beta-alpha),sin beta) and H=(cos (beta-alpha+theta),sin (beta-theta)) , where theta lt alpha, beta, theta lt (pi)/4 Then

    A
    P lies on the line segment RQ
    B
    Q lies on the line segment PR
    C
    R lies on the line segment QP
    D
    P,Q,R are non collinear
  • 2 sin ^(2) beta + 4 cos (alpha + beta) sin alpha sin beta + cos 2 (alpha + beta )=

    A
    ` sin 2 alpha `
    B
    `cos 2 beta `
    C
    `cos 2 alpha `
    D
    `sin 2 beta `
  • 2 sin^(2) beta + 4 cos ( alpha + beta ) sin alpha sin beta + cos 2 ( alpha + beta ) =

    A
    ` sin 2 alpha`
    B
    `cos 2 beta`
    C
    `cos 2 alpha`
    D
    ` sin 2 beta`
  • Similar Questions

    Explore conceptually related problems

    If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

    cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta) =

    cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

    det[[cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha cos beta,sin alpha sin beta,cos alpha]]

    Find the value of, cos alpha cos beta, cos alpha sin beta, -no alpha-sin beta, cos beta, 0 sin alpha cos beta, sin alpha sin beta, cos alpha] |