Home
Class 12
MATHS
Area of a triangle whose vertices are (a...

Area of a triangle whose vertices are `(a cos theta, b sin theta) , ( - a sin theta , b cos theta) " and " ( - a cos theta, - b sin theta) ` is

A

`ab sin theta cos theta `

B

`a cos theta sin theta`

C

`1/2 ab `

D

`ab`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle with vertices at \( (a \cos \theta, b \sin \theta) \), \( (-a \sin \theta, b \cos \theta) \), and \( (-a \cos \theta, -b \sin \theta) \), we can use the formula for the area of a triangle given its vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\): \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] ### Step 1: Identify the vertices Let: - \( (x_1, y_1) = (a \cos \theta, b \sin \theta) \) - \( (x_2, y_2) = (-a \sin \theta, b \cos \theta) \) - \( (x_3, y_3) = (-a \cos \theta, -b \sin \theta) \) ### Step 2: Substitute the vertices into the area formula Substituting the coordinates into the area formula: \[ \text{Area} = \frac{1}{2} \left| a \cos \theta \left( b \cos \theta - (-b \sin \theta) \right) + (-a \sin \theta) \left( -b \sin \theta - b \sin \theta \right) + (-a \cos \theta) \left( b \sin \theta - b \cos \theta \right) \right| \] ### Step 3: Simplify the expression Now, simplify each term in the determinant: 1. The first term: \[ a \cos \theta (b \cos \theta + b \sin \theta) = a b \cos \theta (\cos \theta + \sin \theta) \] 2. The second term: \[ -a \sin \theta (-b \sin \theta - b \cos \theta) = a b \sin \theta (\sin \theta + \cos \theta) \] 3. The third term: \[ -a \cos \theta (b \sin \theta - b \cos \theta) = -a b \cos \theta (\sin \theta - \cos \theta) \] Combining these gives: \[ \text{Area} = \frac{1}{2} \left| a b \cos \theta (\cos \theta + \sin \theta) + a b \sin \theta (\sin \theta + \cos \theta) - a b \cos \theta (\sin \theta - \cos \theta) \right| \] ### Step 4: Factor out common terms Factoring out \( ab \): \[ = \frac{1}{2} ab \left| \cos \theta (\cos \theta + \sin \theta) + \sin \theta (\sin \theta + \cos \theta) - \cos \theta (\sin \theta - \cos \theta) \right| \] ### Step 5: Combine and simplify Combine the terms: \[ = \frac{1}{2} ab \left| \cos^2 \theta + \sin^2 \theta + 2 \sin \theta \cos \theta \right| \] Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ = \frac{1}{2} ab \left| 1 + 2 \sin \theta \cos \theta \right| \] ### Step 6: Final simplification Recognizing \( 2 \sin \theta \cos \theta = \sin(2\theta) \): \[ = \frac{1}{2} ab \left| 1 + \sin(2\theta) \right| \] ### Final Result Thus, the area of the triangle is: \[ \text{Area} = ab \]
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINE

    MOTION|Exercise EXERCISE 1 (SECTION - D : LOCUS)|3 Videos
  • STRAIGHT LINE

    MOTION|Exercise EXERCISE 1 (SECTION - E VARIOUS FORMS OF STRAIGHT LINE)|7 Videos
  • STRAIGHT LINE

    MOTION|Exercise EXERCISE 1 (SECTION - B : SECTION FORMULA)|2 Videos
  • SOLUTION OF TRIANGLE

    MOTION|Exercise EXERCISE - 4( LEVEL II)|10 Videos
  • TANGENT & NORMAL

    MOTION|Exercise EXERCISE 4|14 Videos

Similar Questions

Explore conceptually related problems

If a sin theta + b cos theta = c then the value of a cos theta -b sin theta is :

If a cos theta - b sin theta =c, " then" a sin theta + b cos theta is equal to

If b tan theta = a find the value of (cos theta + sin theta )/( cos theta - sin theta)

(1 + cos theta + sin theta) / (1 + cos theta-sin theta) = (1 + sin theta) / (cos theta)

A=[(cos theta, -sin theta),(sin theta, cos theta)] and AB=BA=l , then B is equal to

The distance between the points (a cos theta+b sin theta,0) and (0,a sin theta-b cos theta)

If a cos theta + b sin theta = c, then what is the value of a sin theta - b cos theta ?