Home
Class 12
PHYSICS
A smooth wire is bent into a vertical ci...

A smooth wire is bent into a vertical circle of radius a. `A` bead `P` can slide smoothly on the wire. The circle is rotated about vertical diameter AB as axis with a speed omega as shown in figure. The bead `P` is ar rest w.r.t. the circular ring in the position shown. then `omega^(2)` is equal to:

A

2g/a

B

2g / (a `sqrt(3)`)

C

g `sqrt(3) `g /a

D

2a / (g `sqrt(3)`)

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CIRCULAR MOTION

    MOTION|Exercise EXERCISE - 3 SECTION -A|14 Videos
  • CIRCULAR MOTION

    MOTION|Exercise EXERCISE - 3 SECTION - B|8 Videos
  • CIRCULAR MOTION

    MOTION|Exercise EXERCISE -1|41 Videos
  • CENTRE OF MASS

    MOTION|Exercise Exercise - 4 Level-II|20 Videos
  • COMMUNICATION SYSTEM

    MOTION|Exercise EXERCISE - 3|6 Videos

Similar Questions

Explore conceptually related problems

A smooth wire of length 2pir is bent into a circle and kept in a vertical plane. A bead can slide smoothly on the wire. When the circle is rotating with angular speed about the vertical diameter AB, as shown in the figure, the bead is at rest with respect to the circular ring at potion P as shown. Then the value of omega^(2) is equal to:

A thin circular ring of mass per unit length p and radius r is rotating at an angular speed omega as shown in figure. The tension in the ring is

Knowledge Check

  • A ring of radius r is rotating about a vertical axis along its diameter with constant angular velocity omega.A read of mass m remains at rest w.r.t. ring at the position shown in figure. Then w^(2) is:

    A
    `(g)/(sqrt(3))`
    B
    `(2g)/(sqrt(3r))`
    C
    `(sqrt(3g))/(r)`
    D
    `(g)/(r)`
  • A small ring P is threaded on a smooth wire bent in the form of a circle of radius a and centre O. The wire is rotating with constant angular speed omega about a vertical diameter xy, while the ring remains at rest relative to the wire at a distance (a)/(2) from xy. Then is equal to:

    A
    `(2g)/(a)`
    B
    `(g)/(2a)`
    C
    `(2g)/(asqrt(3))`
    D
    `(g sqrt(3))/(2a)`
  • A wire of resistance 0.5 omega m^(-1) is bent into a circle of radius 1m . The same wire is connected across a diameter AB as shown in fig. The equivalent resistance is

    A
    `pi ohm`
    B
    `(pi)/((pi + 2)) ohm`
    C
    `(pi)/((pi + 4)) ohm`
    D
    `(pi + 1) ohm`
  • Similar Questions

    Explore conceptually related problems

    A circular loop has a small bead which can slide on it without friction. The radius of the loop is r. Keeping the loop vertically it is rotated about a vertical diameter at a constant angular speed omega . What is the value of angle theta , when the bead is in dynamic equilibrium ?

    Two particles P and Q are moving as shown in the figure. At this moment of time the angular speed of P w.r.t. Q is

    A small bead of mass 'm' is threaded on a frictionless circulat wire of radius 'a' . The circule wire frame is rotated about its vertical diameter as shown. (assume acceleration due to grasvity is g) The angular speed required if the bead is to be made to move in a horizontal circle of radius (a sqrt(3))/(2) is :

    A wire of resistance 10 Omega is bent to form a circle. P and Q are points on the circumference of the circle dividing it into a quadrant and are connected to a Battery of 3 V and internal resistance 1 Omega as shown in the figure. The currents in the two parts of the circle are

    A part of a long wire carrying a current i is bent into a circle of radius r as shown in figure. The net magnetic field at the centre O of the circular loop is