Home
Class 12
MATHS
Let f(x) = underset(n rarr oo)("Lim")( 2...

Let `f(x) = underset(n rarr oo)("Lim")( 2x^(2n) sin""(1)/(x) +x)/(1+x^(2n))` then find
`underset( x rarr -oo)("Lim") f(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ f(x) = \lim_{n \to \infty} \frac{2x^{2n} \sin\left(\frac{1}{x}\right) + x}{1 + x^{2n}}, \] we want to find \[ \lim_{x \to -\infty} f(x). \] ### Step 1: Analyze the function as \( x \to -\infty \) As \( x \) approaches \(-\infty\), we can analyze the behavior of each term in the function. 1. The term \( x^{2n} \) approaches \( +\infty \) since \( 2n \) is even. 2. The term \( \sin\left(\frac{1}{x}\right) \) approaches \( \sin(0) = 0 \) as \( x \to -\infty \). 3. The term \( 2x^{2n} \sin\left(\frac{1}{x}\right) \) will thus approach \( 0 \) because \( \sin\left(\frac{1}{x}\right) \) approaches \( 0 \). 4. The term \( x \) approaches \(-\infty\). Thus, we can rewrite \( f(x) \) as: \[ f(x) = \lim_{n \to \infty} \frac{0 + x}{1 + x^{2n}} = \lim_{n \to \infty} \frac{x}{1 + x^{2n}}. \] ### Step 2: Simplify the limit Now, we need to analyze the limit of the expression as \( n \to \infty \): \[ \lim_{n \to \infty} \frac{x}{1 + x^{2n}}. \] As \( x \to -\infty \), \( x^{2n} \) approaches \( +\infty \) (since \( 2n \) is even), and thus \( 1 + x^{2n} \) also approaches \( +\infty \). Therefore, we can simplify the limit: \[ \lim_{n \to \infty} \frac{x}{1 + x^{2n}} = \lim_{n \to \infty} \frac{x}{x^{2n}} \text{ (since \( x^{2n} \) dominates 1)}. \] ### Step 3: Further simplification This can be rewritten as: \[ \frac{x}{x^{2n}} = \frac{1}{x^{2n-1}}. \] As \( n \to \infty \), \( x^{2n-1} \) approaches \( +\infty \) (because \( x \) is negative), leading to: \[ \lim_{n \to \infty} \frac{1}{x^{2n-1}} = 0. \] ### Conclusion Thus, we find that: \[ \lim_{x \to -\infty} f(x) = 0. \] ### Final Answer \[ \lim_{x \to -\infty} f(x) = 0. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-2(LEVEL-2)|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = underset(n rarr oo)("Lim")( 2x^(2n) sin""(1)/(x) +x)/(1+x^(2n)) then find underset( x rarr 0)("Lim")f(x)

Let f(x)=lim_(n rarr oo)(log(2+x)-x^(2n)sin x)/(1+x^(2n)) then

Knowledge Check

  • underset( x rarr oo) ( "Lim") ((x+ 2)/( x-2))^(x+1)=

    A
    `e^(4)`
    B
    `e^(-4)`
    C
    ` e^(2)`
    D
    None of these
  • If underset( x rarr oo) ( "lim") (( x^(2) + x+ 1)/(x+1) -ax -b) = 4 , then

    A
    a= 1, b = 4
    B
    a = 1, b = - 4
    C
    a = 2, b =- 3
    D
    a = 2, b = 3
  • Similar Questions

    Explore conceptually related problems

    Evaluate underset( x rarr oo) ( "Lim") x - x^(2) ln ( 1+ ( 1)/( x))

    underset( x rarr oo)("Lim")[cos (2pi ((x)/(1+ x ))^(a))]^(x^(2))a in Q

    Let f(x)=lim_(n rarr oo)(2x^(2n)sin\ 1/x+x)/(1+x^(2n)) then find (a) lim_(x rarr oo) x f(x) (b) lim_(x rarr 1) f(x)

    Let f(x)=lim_(n rarr oo)(sin x)^(2n)

    let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

    Evaluate underset( x rarr oo) ( "lim") ( pi - 2 tan^(-1) x ) ln x