Home
Class 12
MATHS
Let alpha and beta be the distinct roots...

Let `alpha` and `beta` be the distinct roots of `ax^(2) + bx + c = 0` then `underset(x to alpha)(Lt) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2))` equal to

A

`( a^(2))/( 2) ( alpha - beta )^(2)`

B

0

C

` (- a^(2))/( 2) ( alpha - beta )^(2)`

D

`(1)/(2) ( alpha - beta)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMIT

    MOTION|Exercise EXERCISE-3|57 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos

Similar Questions

Explore conceptually related problems

Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then lim_(x to 0) (1- cos (ax^(2)+ bx+c))/((x-alpha)^(2)) is equal to

Let alpha and beta be the roots of ax^(2) + bx + c=0 , then lim_(x to alpha) (1- cos(ax^(2) + bx +c))/(x-alpha)^(2) is euqal to:

Knowledge Check

  • If alpha and beta are the roots of equation ax^2 + bx + c = 0, then the value of alpha/beta + beta/alpha is

    A
    `(b^2 - 2ac)/(ac)`
    B
    `(b^2 - ac)/(ac)`
    C
    `(c^2 - 2ab)/(ab)`
    D
    `(c^2 -a^2)/(ab)`
  • If alpha and beta are the roots of ax^(2)+bx+c=0 , then the value of (a alpha +b)^(-2)+ (a beta +b)^(-2) is equal to

    A
    `(b^(2)-2ac)/(a^(2)c^(2))`
    B
    `(c^(2)-2ab)/(a^(2)b^(2))`
    C
    `(a^(2)-2bc)/(b^(2)c^(2))`
    D
    none
  • If alpha and beta are the roots of the equation ax ^(2) + bx + c = 0, then (1 + alpha + alpha ^(2)) (1 + beta + beta ^(2)) is equal to

    A
    0
    B
    positive
    C
    negative
    D
    None
  • Similar Questions

    Explore conceptually related problems

    If alpha,beta are the distinct roots of x^(2)+bx+c=0 , then lim_(x to beta)(e^(2(x^(2)+bx+c))-1-2(x^(2)+bx+c))/((x-beta)^(2)) is equal to

    let alpha and beta be the roots of ax^(2)+bx+c then fin the value of (1)/(alpha)-(1)/(beta)

    if alpha and beta are the roots of ax^(2)+bx+c=0 then the value of {(1)/(a alpha+b)+(1)/(a beta+b)} is

    Ifa alpha and beta be the roots of ax^(2)+bx+c=0, then lim_(x rarr alpha)(1+ax^(2)+bx+c)^((1)/(x-a)) is equal to

    If alpha and beta are the roots of ax^(2)+bx+c=0 , then the value of {(1)/(a alpha +b)+(1)/(a beta +b)} is