Home
Class 12
MATHS
Let f(x)= ( cos 2 - cos 2x)/( x^(2) -|x|...

Let `f(x)= ( cos 2 - cos 2x)/( x^(2) -|x|)` , then

A

`underset( x rarr -1) ( "Lim") f(x) = 2 sin 2`

B

`underset( x rarr 1) ( "Lim") f(x) = 2 sin 2`

C

`underset( x rarr -1) ( "Lim") f(x) = 2 cos 2`

D

`underset( x rarr 1) ( "Lim") f(x) = 2 cos 2`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    MOTION|Exercise EXERCISE-3|57 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos
  • LIMIT

    MOTION|Exercise EXERCISE -2( LEVEL-I)|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(1-cos x sqrt(cos 2x))/x^2 , x ne 0 The value of f(0) so that f is a continuous function is

Let f(x)=cos x sin2x then

Let f(x)=cos x sin2x, then

Let f(x)= cos^(-1)((x^(2))/(x^(2)+1)) . Then , the range of the f , is

Let f(x)=cos x and g(x)=x^(2)

If f(x) = |{:( cos (2x) ,, cos ( 2x ) ,, sin ( 2x) ), ( - cos x,, cosx ,, - sin x ), ( sinx,, sin x,, cos x ):}| , then

Let f(x)={[(1-cos4x)/(x^(2)), if x 0 continuous at x=0.