Home
Class 9
MATHS
Prove that : (a^(-1))/(a^(-1)+b^(-1))+(a...

Prove that : `(a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^2)/(b^2-a^2)`

Text Solution

AI Generated Solution

To prove the equation \[ \frac{a^{-1}}{a^{-1} + b^{-1}} + \frac{a^{-1}}{a^{-1} - b^{-1}} = \frac{2b^2}{b^2 - a^2} \] we will simplify the left-hand side step by step. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE GEOMETRY

    RD SHARMA|Exercise All Questions|23 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    RD SHARMA|Exercise All Questions|226 Videos

Similar Questions

Explore conceptually related problems

Prove that (i) (a^(-1))/(a^(-1) + b^(-1)) + (a^(-1))/(a^(-1)-b^(-1)) = (2b^(2))/(b^(2) -a^(2)) (ii) (1)/(1+x^(a-b)) + (1)/(1+x^(b-a)) = 1

Prove that 2tan^(-1)sqrt((b)/(a))=cos^(-1)((a-b)/(a+b))

Prove that : cos ^(-1) ((1- a^(2))/(1+a)) + cos ^(-1)((1-b^(2))/(1+b^(2))) = 2 tan ^(-1) .(a+b)/(1-ab)

Prove that : tan^(-1) a - tan^(-1) b = cos ^(-1) [(1+ab)/(sqrt((1+a^(2))(1+b^(2))))]

if a,b,c are in H.P., prove that ((1)/(a)+(1)/(b)-(1)/(c))((1)/(b)+(1)/(c)-(1)/(a))=(4)/(ac)-(3)/(b^(2))

det[[ Prove that :,c^(2)a^(2),b^(2),c^(2)(a+1)^(2),(b+1)^(2),(c+1)^(2)(a-1)^(2),(b-1)^(2),[c-1)^(2)]]=4det[[a^(2),b^(2),c^(2)a,b,c1,1,1]]

Prove that: tan^(-1){(pi)/(4)+(1)/(2)(cos^(-1)a)/(b)}+tan{(pi)/(4)-(1)/(2)(cos^(-1)a)/(b)}=(2b)/(a)

If a,b, and c are in G.P.then prove that (1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)-c^(2))

If a, b, c are in geometric progression, then prove that : (1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)-c^(2))

If a, b, c are in G.P., then prove that (1)/(a^(2)-b^(2))-(1)/(b^(2)-c^(2))=-(1)/(b^(2)) . [Hint : Put b = ar, c = ar^(2) ]