Home
Class 9
MATHS
In A B C ,D is the mid-point of A B ,P ...

In ` A B C ,D` is the mid-point of `A B ,P` is any point of `B CdotC Q P D` meets `A B` in `Q` . Show that `a r( B P Q)=1/2a r( A B C)dot` TO PROVE : `a r( B P Q)=1/2a r( A B C)` CONSTRUCTION : Join CD.

Text Solution

AI Generated Solution

To prove that the area of triangle \( BPQ \) is equal to half the area of triangle \( ABC \), we will follow these steps: ### Step-by-Step Solution: 1. **Identify the Midpoints:** - Given triangle \( ABC \), point \( D \) is the midpoint of side \( AB \). This means \( AD = DB \). 2. **Construct Line Segment:** ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRAIC IDENTITIES

    RD SHARMA|Exercise All Questions|247 Videos
  • CIRCLE

    RD SHARMA|Exercise All Questions|306 Videos

Similar Questions

Explore conceptually related problems

In A A B C ,\ P\ a n d\ Q are respectively the mid-points of A B\ a n d\ B C and R is the mid-point of A Pdot Prove that: a r\ (\ P R Q)=1/2a r\ (\ A R C)

In Figure, A B C D is a parallelogram. Prove that: a r( B C P)=a r( D P Q) CONSTRUCTION : Join A Cdot

In A A B C ,\ P\ a n d\ Q are respectively the mid-points of A B\ a n d\ B C and R is the mid-point of A Pdot Prove that: a r\ ( P B Q)=\ a r\ (\ A R C)

In Figure, P is a point in the interior of a parallelogram A B C D . Show that a r( A P B)+a r( P C D)=1/2a r(^(gm)A B C D) a R(A P D)+a r( P B C)=a r( A P B)+a r( P C D)

In A A B C ,\ P\ a n d\ Q are respectively the mid-points of A B\ a n d\ B C and R is the mid-point of A Pdot Prove that: a r\ ( R Q C)=3/8\ a r\ (\ A B C)

The side A B of a parallelogram A B C D is produced to any point Pdot A line through A parallel to C P meets C B produced in Q and the parallelogram P B Q R completed. Show that a r(^(gm)A B C D)=a r(^(gm)B P R Q)dot CONSTRUCTION : Join A C and PQ. TO PROVE : a r(^(gm)A B C D)=a r(^(gm)B P R Q)

p A N D q are any two points lying on the sides D C a n d A D respectively of a parallelogram A B C Ddot Show that a r( A P B)=a r ( B Q C)dot

In Figure, P is a point in the interior of a parallelogram A B C Ddot Show that a r( A P B)+a r( P C D)=1/2a r\ (|""|^(gm)A B C D) a r\ ( A P D)+a r\ ( P B C)=a r\ ( A P B)+a r( P C D)

A B C D is a parallelogram whose diagonals intersect at Odot If P is any point on B O , prove that: a r\ ( A D O)=A R\ ( C D O) a r\ (\ A B P)=\ a r\ (\ C B P)

In Figure, P Q R S and A B R S are parallelograms and X is any point on side B Rdot Show that : a r(^(gm)P Q R S)=a r(^(gm)A B R S) a r(A X S)=1/2a r( P Q R S)