Home
Class 12
MATHS
Prove that the value of each the followi...

Prove that the value of each the following determinants is zero: `|(a^x+a^(-x))^2(a^x-a^(-x))^2 1(b^y+b^(-y))^2(b^y-+b^(-y))^2 1(c^z+c^(-z))^2(c^z-c^(-z))^2 1|`

A

`a^(x)b^(y)c^(z)`

B

`a^(-x)b^(-y)c^(-z)`

C

`a^(2x)b^(2y)c^(2z)`

D

zero

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    MOTION|Exercise EXERCISE-2 (LEVEL-II)|6 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-3|36 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-1|13 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|15 Videos

Similar Questions

Explore conceptually related problems

Prove that the value of each the following determinants is zero: (a^(x)+a^(-x))^(2),(a^(x)-a^(-x))^(2),1(b^(y)+b^(-y))^(2),(b^(y)-+b^(-y))^(2),1(c^(z)+c^(-z))^(2),(c^(z)-c^(-z))^(2),1]|

If a,b,c>0 and x,y,z in R then |[(a^x+a^(-x))^2, (a^x-a^(-x))^2, 1] , [(b^y+b^(-y))^2, (b^y-b^(-y))^2, 1], [(c^z+c^(-z))^2, (c^z-c^(-z))^2, 1]|=

Knowledge Check

  • If a, b,c gt 0& x,y,z in R" then the determinant"[{:(,(a^(2)+a^(-2))^(2),(a^(x)-a^(x))^(2),1),(,(b^(y)+b^(-y))^(2),(b^(y)-b^(y))^(2),1),(,(c^(x)+c^(-2))^(2),(c^(x)-c^(-z))^(2),1):}]=

    A
    `a^(x)b^(y)c^(z)`
    B
    `a^(-x)b^(-y)c^(-z)`
    C
    `a^(2x)b^(2y)c^(2z)`
    D
    zero
  • The following steps are involved in finding the value of (a^(x+y))^(x-y)(a^(y+z))^(y-z)(a^(z+x))^(z-x) . Arrange them in sequantial order. (A) a^((x+y)(x-y).a^(y+z)(y-z).a^((z+x)(z-x)) (B) a^0=1 (C) a^(x^2-y^2).a^(y^2-z^2).a^(z^2-x^2) (D) a^(x^2-y^2+y^2-z^2+z^2-x^2)

    A
    ADCB
    B
    ACBD
    C
    ACDB
    D
    ADBC
  • Similar Questions

    Explore conceptually related problems

    If a, b,c> 0 and x,y,z in R then the determinant: |((a^x+a^-x)^2,(a^x-a^-x)^2,1),((b^y+b^-y)^2,(b^y-b^-y)^2,1),((c^z+c^-z)^2,(c^z-c^-z)^2,1)| is equal to

    Without expanding, show that "Delta"=|(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(c-z)^2|=2(a-b)(b-c)(c-a)(x-y)(y-z)(z-x)

    Prove that |(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(c-z)^2|= |(1+a x)^2(1+b x)^2(1+c x)^2(1+a y)^2(1+b y)^2(1+c y)^2(1+a z)^2(1+b z)^2(1+c z)^2|=2(b-c)(c-c)(a-b)xx(y-z)(z-x)(x-y)dot

    If a, b, c > 0 and x, y, z E R, then the determinant (a +a*)2 (a -ax)2 1 (b + b-y)2 (b b-y)2 1 (c2 + c2)2 (c+c2)2 1 x12 al roots of = 0, is is dependent on a. a, b, c only c. a, b, c, x, y, z b. x, y, z only d. None of these (-9: Let x < 1? then value of x2 +2 2x +1 1

    Evaluate each of the following algebraic expressions for x=1,\ y=-1, z=2,\ a=-2,\ b=1,\ c=-2: (i) a x+b y+c z (ii) a x^2+b y^2-c z^2 (iii) a x y+b y z+c x y

    a(y+z)=x,b(z+x)=y,c(x+y)=z prove that (x^(2))/(a(1-bc))=(y^(2))/(b(1-ca))=(z^(2))/(c(1-ab))