Home
Class 12
MATHS
Prove that int(-a)^(a) dx = {(2int(0)^(a...

Prove that `int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):}` and hence evaluate
(b) `int_(-pi//2)^(pi//2) sin^(7) x dx`.

Answer

Step by step text solution for Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (b) int_(-pi//2)^(pi//2) sin^(7) x dx. by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SUPPLEMENTARY EXAM QUESTION PAPER JUNE 2018

    SUBHASH PUBLICATION|Exercise PART D|10 Videos
  • SUPER MODEL QUESTIONS PAPER (WITH ANSWERS)

    SUBHASH PUBLICATION|Exercise PART-E|1 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER (WITH ANSWERS) JUNE 2016

    SUBHASH PUBLICATION|Exercise PART E|2 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (d) int_(-pi//2)^(pi//2)tan^(9) xdx .

Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (c) int_(0)^(pi)|cosx|dx .

Knowledge Check

  • int_(-pi/2)^(pi/2) sin x. cosh x dx =

    A
    0
    B
    `pi/4`
    C
    `e^(pi)/4`
    D
    none of these
  • int_(-pi/2)^(pi/2) cos x. sinh x dx =

    A
    `pi/4`
    B
    `e^(pi)`
    C
    0
    D
    `-pi/4`
  • int_(0)^(pi//2)x sin^2 x dx=

    A
    `pi^2/4 + 1/16`
    B
    `pi^2/16 + 1/4`
    C
    `pi^2`
    D
    0
  • Similar Questions

    Explore conceptually related problems

    Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (a) int_(-1)^(1) sin^(5)x cos^(4)xdx .

    Prove that: int_(-a)^(a) f(x) dx = {{:(2int_(0)^(a)f(x)dx, f(x) " is even "),(0, f(x) " is odd"):} and hence Evaluate int_(-t)^(t) sin^(5)(x)cos^(4)(x) dx

    Prove that int_(-a)^(a)f(x)dx= {(2int_(0)^(a)f(x)dx ,"if f(x) is even function"),(0, "if f(x) is odd function"):} and hence evaluate int_(-(pi)/(2))^((pi)/(2))sin^(7)xdx

    Evaluate : int_(-pi/2) ^(pi/2) sin^2x dx

    Evaluate int_((-pi)/4)^(pi/4)sin^(2)x dx