Home
Class 12
MATHS
Prove that int(-a)^(a) dx = {(2int(0)^(a...

Prove that `int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):}` and hence evaluate
(b) `int_(-pi//2)^(pi//2) sin^(7) x dx`.

Promotional Banner

Topper's Solved these Questions

  • SUPPLEMENTARY EXAM QUESTION PAPER JUNE 2018

    SUBHASH PUBLICATION|Exercise PART D|10 Videos
  • SUPER MODEL QUESTIONS PAPER (WITH ANSWERS)

    SUBHASH PUBLICATION|Exercise PART-E|1 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER (WITH ANSWERS) JUNE 2016

    SUBHASH PUBLICATION|Exercise PART E|2 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (d) int_(-pi//2)^(pi//2)tan^(9) xdx .

Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (c) int_(0)^(pi)|cosx|dx .

Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (a) int_(-1)^(1) sin^(5)x cos^(4)xdx .

Prove that: int_(-a)^(a) f(x) dx = {{:(2int_(0)^(a)f(x)dx, f(x) " is even "),(0, f(x) " is odd"):} and hence Evaluate int_(-t)^(t) sin^(5)(x)cos^(4)(x) dx

Prove that int_(-a)^(a)f(x)dx= {(2int_(0)^(a)f(x)dx ,"if f(x) is even function"),(0, "if f(x) is odd function"):} and hence evaluate int_(-(pi)/(2))^((pi)/(2))sin^(7)xdx

Evaluate : int_(-pi/2) ^(pi/2) sin^2x dx

Evaluate int_((-pi)/4)^(pi/4)sin^(2)x dx