Home
Class 12
MATHS
Show that the three lines with directio...

Show that the three lines with direction cosines `(12)/(13),(-3)/(13),(-4)/(13),4/(13),(12)/(13),3/(13), 3/(13),(-4)/(13),(12)/(13)`are mutually perpendicular.

Text Solution

AI Generated Solution

To show that the three lines with direction cosines \(\left(\frac{12}{13}, -\frac{3}{13}, -\frac{4}{13}\right)\), \(\left(\frac{4}{13}, \frac{12}{13}, \frac{3}{13}\right)\), and \(\left(\frac{3}{13}, -\frac{4}{13}, \frac{12}{13}\right)\) are mutually perpendicular, we will use the property that two lines are perpendicular if the sum of the products of their direction cosines is zero. ### Step 1: Identify the direction cosines Let: - Line 1 (L1): \(L_1 = \frac{12}{13}, M_1 = -\frac{3}{13}, N_1 = -\frac{4}{13}\) - Line 2 (L2): \(L_2 = \frac{4}{13}, M_2 = \frac{12}{13}, N_2 = \frac{3}{13}\) - Line 3 (L3): \(L_3 = \frac{3}{13}, M_3 = -\frac{4}{13}, N_3 = \frac{12}{13}\) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise MISCELLANEOUS EXERCISE|23 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise SOLVED EXAMPLES|30 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise QUESTION|1 Videos
  • SETS

    NCERT|Exercise EXERCISE 1.3|1 Videos
  • VECTOR ALGEBRA

    NCERT|Exercise EXERCISE 10.1|5 Videos

Similar Questions

Explore conceptually related problems

Check if lines with direction-cosines : lt (12)/(13) , - (3)/(13) , - (4)/(13) gt , lt (4)/(13) , (12)/(13), (3)/(13) gt , lt (3)/(13) , (4)/(13) , (12)/(13) gt are mutually perpendicular .

(-4)/(13)+0=0+(-4)/(13)

(9)/(13)+(-8)/(13)+(4)/(3)+(-5)/(8)

(8)/(4)-(6)/(3)+(9)/(12)-:(15)/(13)

((12)/(17)times(12)/(17)-(13)/(34)times(13)/(34))/((12)/(17)+(13)/(34))

Solve : 4/(13)+2/(13)+1/(13)

(2/13)^(4/3)div(2/13)^(5/3)

Prove that: 2cos (pi)/(13) cos (9 pi)/(13)(3 pi)/(13)(5 pi)/(13)=0

Which of the following is a proper fraction? (13)/(17) (b) (17)/(13) (c) (12)/5 (d) 1 3/4

13^(4/3)div13^(1/3)