Home
Class 12
MATHS
Find the value of sin^(-1)(-(sqrt(3))...

Find the value of
`sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((1)/(2))+tan^(-1)(-(1)/(sqrt(3)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question \( \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) + \cos^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) \), we will evaluate each term step by step. ### Step 1: Evaluate \( \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) \) Using the property of inverse sine, we know that: \[ \sin^{-1}(-x) = -\sin^{-1}(x) \] Thus, \[ \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \] Now, we find \( \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \). The angle whose sine is \( \frac{\sqrt{3}}{2} \) is \( \frac{\pi}{3} \): \[ \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} \] Therefore, \[ \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3} \] ### Step 2: Evaluate \( \cos^{-1}\left(\frac{1}{2}\right) \) The angle whose cosine is \( \frac{1}{2} \) is \( \frac{\pi}{3} \): \[ \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \] ### Step 3: Evaluate \( \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) \) Using the property of inverse tangent, we have: \[ \tan^{-1}(-x) = -\tan^{-1}(x) \] Thus, \[ \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \] Now, we find \( \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \). The angle whose tangent is \( \frac{1}{\sqrt{3}} \) is \( \frac{\pi}{6} \): \[ \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] Therefore, \[ \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6} \] ### Step 4: Combine all the values Now we can combine all the evaluated terms: \[ \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) + \cos^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{3} + \frac{\pi}{3} - \frac{\pi}{6} \] The first two terms cancel each other: \[ -\frac{\pi}{3} + \frac{\pi}{3} = 0 \] Thus, we have: \[ 0 - \frac{\pi}{6} = -\frac{\pi}{6} \] ### Final Answer The value of \( \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) + \cos^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) \) is: \[ \boxed{-\frac{\pi}{6}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((sqrt(3))/(2))

Find the value of sin^(-1)(sqrt3/2)+cos^(-1)(-1)+tan^(-1)(-1)

Knowledge Check

  • The principal value of cos^(-1)((1)/(2))+2sin^(-1)((1)/(2))+4tan^(-1)((1)/(sqrt3)) is

    A
    `(pi)/(3)`
    B
    `(pi)/(6)`
    C
    `(4pi)/(3)`
    D
    `(3pi)/(4)`
  • The value of sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-1) (-sqrt3) + cot ^(-1) (-(1)/(sqrt3)) is

    A
    `(5pi)/(12)`
    B
    `(17pi)/(12)`
    C
    0
    D
    1
  • Similar Questions

    Explore conceptually related problems

    Find the principal values of : (1) cos^(-1)((sqrt(3))/(2)) (2) sin^(-1)(-(1)/(sqrt(2))) (3) cot^(-1) (-(1)/(sqrt(3)))

    sin^(-1)((sqrt(3))/(2))-tan^(-1)(-sqrt(3))

    Find the value of sin[tan tan^(-1)(-sqrt(3))+cos^(-1)((sqrt(3))/(-2))]

    Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/(2))}]

    Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/(2))}]

    Find the value of : tan^(-1) ((-1)/(sqrt(3)))+cos^(-1)((-sqrt(3))/2)+sin^(-1)(1/2)