Home
Class 12
MATHS
Find the minimum value of sin x + cos x....

Find the minimum value of sin x + cos x.

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( \sin x + \cos x \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = \sin x + \cos x \] We can factor out \( \sqrt{2} \) to help us rewrite the expression. ### Step 2: Factor out \( \sqrt{2} \) We can express \( \sin x + \cos x \) as: \[ y = \sqrt{2} \left( \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x \right) \] Here, we have multiplied and divided by \( \sqrt{2} \). ### Step 3: Recognize the angle Notice that \( \frac{1}{\sqrt{2}} = \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) \). Thus, we can rewrite the expression as: \[ y = \sqrt{2} \left( \sin\left(\frac{\pi}{4}\right) \sin x + \cos\left(\frac{\pi}{4}\right) \cos x \right) \] This is the sine addition formula: \[ y = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] ### Step 4: Determine the range of the sine function The sine function \( \sin(x + \frac{\pi}{4}) \) oscillates between -1 and 1. Therefore, the minimum value of \( y \) occurs when: \[ \sin\left(x + \frac{\pi}{4}\right) = -1 \] ### Step 5: Calculate the minimum value Substituting this back into our expression for \( y \): \[ y_{\text{min}} = \sqrt{2} \cdot (-1) = -\sqrt{2} \] ### Conclusion Thus, the minimum value of \( \sin x + \cos x \) is: \[ \boxed{-\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise 2 MARK QUESTIONS|20 Videos
  • APPLICATION OF DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|57 Videos
  • APPLICATIONS OF INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR/SIX MARK QUESTIONS|26 Videos

Similar Questions

Explore conceptually related problems

Find the mimimum value of sin x cos x.

Find the minimum value of sin^(2)x

For x in R, the minimum value of |sin x+cos x+tan x+sec x+cos ecx+cot x| is

The minimum value of sin x+cos x-1 is

Find the minimum value of 2^("sin" x) + 2^("cos" x)

A minimum value of sin x cos2x is -

If 0

Find the maximum and minimum value of 6sin x cos + 4 cos 2x .